Chapter 3

Analytic model of the
simulation

This chapter presents analytic models for the bulk and the sheaths, results from
which are compared to the PIC simulation. Results from other numerical codes are also
compared to the PIC and analytic results. As mentioned in Chapter 1 most of the PIC
simulations were run using atomic hydrogen gas with collisional electrons and |
collisionless ions. These conditions were chosen since cross-sections for hydrogen are
well known, and having the lightest ion mass hydrogen reaches steady-state conditions
quickly. These simulations were primarily designed to determine the effect of the
"external” or applied parameters — such as area ratio, voltage, pressure and frequency (as
detailed in Table 2.1) - on the "internal" plasma characteristics, that is the electron
temperature, the average potential and density distributions, ion currents, sheath widths
etc. _ .

In numerical work the number of diagnostics included is essentially limited only

by time constraints for computation — this potentially means there is a vast body of
information about the plasma for each different set of conditions. The problem is then to
organise this information into some meaningful form, such as scaling laws relating the
external input parameters to the internal plasma parameters, in order to further understand
the physical processes driviﬁg the plasma. Furthermore it is desirable to check the
validity of the PIC model, by determining whether the physical picture derived from it
accords with other numerical and analytic models. Comparison _td experimental results is
not really possible for the parameters shown in Table 2.1, since these conditions were
not chosen to represent a real physical system, rather they represent a simplified view for
comparison with one dimensional models. Hence the analytic model presented here was
designed to incorporate the physical features of the PIC code — spherical .geoinetry, |
collisionless ions - and by tailoring the analytic model to fit the simulation results an
understanding of the important physics in the simulation and the consequent effect on the
macroscopic behaviour of the plasma is obtained. |

Low pressure capacitively coupled 1f systems have been quite intensively
modelled over the past twenty years or so, because of their technical applications in the
materials processing industry. A number of analytic models, including assumptions and
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Figure 4.27 shows a phase space plot for the ions, radial position is plotted along
the x-axis and velocity along the y-axis, with positive velocity indicating motion to the
right and negative motion to the left. This shows clearly the separation between motion in

- the sheaths-and the bulk - considering an-ion moving out to the-centre-of the-plasma; it is

accelerated slowly until it reaches a critical velocity, whereupon it undergoes rapid
acceleration. Due to inertia the ions can only react to the time-averaged fields and so the
phase plot delineates the distribution of the average fields in the bulk and the sheath. In
order to satisfy Bohm's criterion for the sheath, a region of the bulk with small average
fields exists to accelerate ions to velocities greater than or equal to the ion acoustic
velocity at the bulk-sheath interface. This region is known as the pre-sheath and in

collisional plasmas it is restricted to the region immediately adjacent to the sheath, butin |

the simulation ions are collisionless and so the pre-sheath fields penefrate through the
whole bulk. Once the ions have reached the sheath edge the large fields in the sheath
accelerate them toward the electrode. The magnitude of the potential across the sheath can
be related to the ion flux at the sheath edge and the sheath width through the sheath
equation, which is derived in Section 3.1. |

In Section 3.1.1 a dc sheath model is developed, following the technique
originally used by Langmuir and Blodgett (1924). In Section 3.1.2 the effect of the 1f
voltage on the average density in the sheath is examined using results from the
simulation, and an eqﬁation for the total charge density is developed. In Section 3.1.2 the
sheath law for the rf case is derived. In Section 3.2 a model of the plasma bulk is derived
from simple kinetic techniques, following the method used by Tonks and Langmuir
(1929). The model includes equations for the bulk potential and density distributions, the
average electron temperature, the bulk width and the ion currents at the sheath edges. |
Comparison of bulk parameters to kinetic and fluid models presented by Bissell et al
(1989) is given in Section 3.2.7. Finally, in Section 3.3 some scaling laws are derived
from the simulation, in order to close the set of equations required by the model to fully
describe the plasma.

3.1  Spherical sheath law

Langmuir (1924) developed an equation to determine the relationship between the
sheath width, the ion current density and the sheath potential for a collisionless dc |
discharge. This is still used today in the familiar form of the Child-Langmuir sheath
equation. Although it was derived for dc conditions, it is also applicable in determining
the ion sheath in rf plasmas, since in general the ions cannot respond at rf frequencies
due to their inertia and so their behaviour is dependent on the time-averaged or dc
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potential across the sheath. Originally derived for a planar electrode system, Langmuir
and Blodgett (1924) expanded the derivation to include cylindrical and spherical
electrodes. One drawback in using this equation to compare to the simulation is that,

-—— sinee it was-derivedfor a-de-system;-electrons-are completely-excluded from-the sheath. -

However, for an rf system the sheath collapses once each tf cycle to allow electrons to
escape and balance the ion loss from the system. This has a discernible effect on the
average total density in the sheath and consequentially on the sheath potential, although it
is often ignored. Lieberman (1988) has calculated the effect of the electron incursion on a
planar 1f sheath, and found that it modified the sheath law by a constant factor.
However, this has not previously been determined for the case of sheaths in a system
with spherical electrodes. ' '

The following describes the derivation of an equation for a collisionless sheath
using Poisson's equation and current continuity. In section 3.1.1 the dc case is derived
obtaining a similar result to that of Langmuir and Blodgett (1924), although the equation
is presented in a different form. In section 3.1.2 the change in the average density in an
the rf sheath due to the periodic incursion of electrons is determined and in Section 3.1.3
the sheath law is modified for rf conditions. |

First of all the sheath equations for the general case are derived. Poisson’s
equation is used to describe the potential distribution in the sheath

2 —
&V 9(nn=-e@;-n,) 3.1)

where ¢ is the time-averaged potential, n; and n, are the ion and electron densities in the
sheath, and n, —n, is the time-averaged total charge density. The ion current density at

any position is determined by the average ion flux, and hence is a function of the density
and the average ion velocity

i
Amr?’

j(r)=en(ryu(r)= (3.2)

where u is the average ion velocity and n; the ion density' at position . There can be
some slight variation of the ion density in the sheath at rf conditions but this is extremely
small at applied frequencies of 10 MHz and is neglected here. _

In order to simplify calculations in the sheath anew coordinate system' inxis
introduced which has the origin, x = 0, at the position of the sheath edge, ry, so that the
electrode is at position x=s, where s is the maximum sheath width. Thus a position Xpin
the sheath has a radial distance from the centre equal to rp = 15 # X, Where + is used for
the sheath at the outer electrode and - for the inner electrode. The sheath
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Figure 3.1 Schematic showing coordinate system in x for the sheath (at the outer
electrode). The potential in the sheath relative to the bulk potential, V, is
shown as a function of x.

potential, V, is measured relative to the plasma potential, ¢, so the sheath potential at x,
is given by V(x) = @, - ¢(rp), with the boundary conditions are V(0) = 0 and V(s) = V;
= @p - Pelec- The new coordinate system is shown schematically in Figure 3.1. Note that

- .in this model the thin sheath approximation is not used, so that sheath calculations are

performed in the full spherical coordinate system. |

According to the Bohm criterion the ions must enter the sheath with a directed
velocity greater than or equal to the ion acoustic velocity, ug. Assuming that the Bohm
criterion is met exactly, and using equation (3.2), then the current at the sheath edge is
given by

i=4nrl’j =4nrlenu,, (3.3)

where n; is the ion density at the sheath edge and r; is the radius of the sheath edge. As
ions enter the sheath they are accelerated by the fields. This model assumes collisionless
ions, so from conservation of energy the ion velocity at any position x is determined by
the potential drop between the sheath edge and x

$my(u(x)® —u,’) = —eV(x),

u(x) = ,uBz _2eV(x) ) ' (3-4)
m;
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Note that Vis negative, since the increase in velocity is due to a drop in the potential. As
the ions are accelerated in the sheath fields there is a decrease in density approaching the
electrode (this is shown schematically in Figure 3.2). The ion current, however, must be

-—independent of position if there is no ionisation within the sheath since current 'continuity

dictates that the number of ions hitting the electrode must equal the number entering the -
sheath. For low pressures, that is p <100 mtorr, this is a reasonable assumption since
the collision frequency per electron is small and the average electron density in the sheath
is also small. Thus by comparing the current at the sheath edge to the current at position

-x the dependance of the density on position, r(x), can be determined. Equating the

current at the sheath edge, equation (3.3), with the current at position x

i =4n(r, + x)en, (x)(u; - 26:1(")

i

12
) =47r enu,. , (3.5)

Rearrénging (3.5) then gives the ion density at any position in the sheath:

. rsznsuB
(rs + x)2\/u82 ~2eV(x)/m,

n(x) =

- n | | (3.6)

: :
(1+1J /1—26"(’?
r, Comug

Having determined the ion density in the sheath, it is necessary to find an

equation for the electron density in order to obtain the total average charge density to use
in Poisson's equation (3.1). This depends on the assumptions used for the sheath

* physics — the following sections derives equations for the dc and f sheaths.

3.1.1 Spherical dc sheath equation: ne = 0

For the dc case the sheath width is constant and so electrons are excluded from
the sheath region at all times (n.b. this derivation assumes no secondary electrons).
Hence the aVerage electron sheath density in equation (3.1) can simply be set to zero, -~
thus making the total charge density equal to the ion density. Substituting equation (3.6)
into (3.1) and expanding V2 in terms of one-dimensional spherical coordinates gives an
equation for the potential in the sheath of '
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Introducing normalised variables n =1 - 14 sandz = % to make the calcu_latioh

m; up s
simpler reduces (3.7) to

-2

3211+_2__@= 2¢’nr? 1 (3.8)

97" 1+z 0z &'mul,2 A+2)*"
This is a non-linear second order differential equation which seems to have no siinple
analytic solution, and hence it must be solved using a power series. For the planar case it
is known that the solution has the form 7 = 8 z# (Langmuir and Blodgett (1924)), so
for spherical geometry it is assumed 7 will have a power series solution of the form

n:ﬁz”'(1+alz+a2z2+a3z3+...), - : (3.9) :
where 8, m and a; are unknown constants. Note that (3 .'9) conforms wifh the boundary

conditions, since at z = 0 (the plasma-sheath boundary) V = 0, by definition_, therefore
n = 0. Differentiating (3.9) with respect to z, and including terms of up to z2 ’

M _ G- ‘[1+( +1)a1z+(m+2)azzz+...], (3.10)(a)
oz m m _ |
- d*n M — Bm(m 1)z 1[1_'_( +1)alz ('”_"'Maz :| 3. 10)(b)
dz* - m(m—1)

Multlplymg both sides of (3.8) by (z+1)?, and substituting for 77 using equatlon (3 9),
and for dn/dzand 3*n/dz’ using (3.10)(a) and (b) ylelds

ﬁm(m_l)zm-2{1+|iz:’:ial+2}z+|:(m+_2)(m+1)a +2(m+1)a1+1}2}

mm-1) " m-1

+/3mz’"‘1{2 +[2(’"+1)a1 +2]z+[2(’"+2) a, + 2(m+1)a1]}+ 0Z%)

m

2 ezns rsz ﬂ—x/z 7

2 v
E, Mg (1 +az+ 61222)
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A binomial expansion to second order on the denominator in brackets on the right hand
side of (3.11) gives

(1+a1z+aqzz)—l/2=1—%z+(3—21——£22-)22+... (3.12)

Substituting (3.12) into (3.11) and rearranging coefficients of z gives

m-—

[(m+1)(m+2)a +2(m+1')(1+l).a L2 +1}22}
2 1 m—].

- m(m-1) (m-1) m

m(m—-1)g 7" 1+[1n——-*:-1a1 +2‘+L:lz+
m—1 1

2. .2
2e nr ﬁ—uz Z—m/2

. _ 3,2 2 3 ‘

= Py [1. %q?+(8q %az)z ]+0(z ). (3.13)

For small z both sides of equation (3.13) are to the same order in z if m—2 =-m/2,
i.e., m = 4/3. The assumption of small z is justified since for most area ratios the bulk
width is very much smaller than the electrode radii, therefore x << rs. Only at very large
area ratios, corresponding to small electrode radii, does x = r,. By substituting m back

into (3.13) and equating constants, 8 can be determined:

2 2 2 2
y2 _ 2enr, 1 92nr

= . 3.14
gup'm, m(m—1) 4 €u,’m, (3.14)

Going back to equation (3.13) and coniparing powers of z values for the coefficients a
can be determined: ‘
16 38

=—22-1067 and a ~>>~1086 3.1
=1z 7 and g =2 (3.15)

» Substituting these values back into (3.9), the equation for 7, in the limit of small z, is

given by

(. 16 38 | .
=B 1-—z+=— 2+...) 3.16
n ﬁz ( 521357 o (3.16)

An equation for the sheath voltage can be determined in terms of real variables by
substituting for 8, 1 and z in (3.16) and re-arranging to give
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(3.17)

2 2 3\3/2
. 9(2¢* n, r Ao 16.x- 38 -x- ( x)
== == |2 l-—==+=|=| +0 = ,
430”":3 r, 15 35\r OLrsJJ

where V, =1/2mu,” =1/2kT,, the minimum energy with which ions enter the sheath.

At the electrode x = s, and V = -Vj. Using these boundary conditions in (3.17)
and assuming V; >> Vp, the sheath voltage can be determined as a function of maximum
sheath width, current, and the radius of curvature

9 enuy 2 16 38 s ’
V, = e \/;s(l 15( )+35( J+O("s) } (3.18)

Using equation (3.3) to substitute for the current density at the sheath edge (3 18) can be
written in the form:

-32 :
.jszgso % Vs3/.2s‘2(1 igz +%§ +O(z )) , (3.19)

i

where zg = s/rs. Note that for the planar case (that is, when r; approaches infinity) z;
approaches zero, and (3.19) reduces to the planar Child-Langmuir law. Since the current
density is a function of position in the sheath, it is more convenient to write (3.19) in
terms of the current, which is constant across the sheath. So using i = 47,2 j; (3.19)

167 [2e 16 38
~——¢, | — V" ‘2(1—— +=z*+0 )
9 “\m T3 355 (=)

16 |2
"o o, W)

becomes:

(3.20)

3.1.2 Time-averaged electron density in the sheath

In the previous section the sheath equation was derived assuming that the sheath
voltage and width remain constant and the electron density in the sheath is zero.
However, when an rf voltage is applied to the electrode the voltage across the sheath
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Figure 3.2 Schematic of the ion (solid line) and electron (broken line) density
profiles. The step in the electron density represents the electron sheath
edge and is represented at various phases of the cycle @) ax=0
(ii) wr=7/4 (iii) wr= /2 (1V) wt= 37/2. The maximum extension of the

_ electron sheath corresponds to the position of the ion sheath, rs

varies periodically during the rf cycle. For applied frequencies in the range @y,; > w,r>
Wpe, Where (pjze is the ion/electron plasma frequency, the sheath voltage varies
sinusoidally in time and once per cycle the voltage approaches zero and electrons can
enter the sheath region (see Figure 4.2) . Defining the sheath edge as the position at -
which the electron densitybdrops to zero, it is therefore obvious that this will also vary
periodically with time, and is in fact found to do so in an approximately sinusoidally
manner (analytic derivations of the sheath motion are presented by Lieberman (1988) and
Raizer and Shneider (1992), and experimental measurements are given by Wood et al
(1991)). The sheath edge can therefore be represented by a variable s(t), where s = 0 at
the plasma-sheath boundary and s = sy,4x at the electrode. In order to determine an

- expression for the sheath motion most analytic models assume that the electron density

can be modelled as a step function with ng(x,t) = ni(x) for x < s(t) and n.(x,t) = 0 for
x> s( t) (Meijer (1991), Lieberman (1988) and (1989b)). This is represented

- schematically in Figure 3.2.

In this section the effect of the periodic incursion of the electrons on the average |
charge'density in the sheath is determined. The derivation of the sheath law in the
previous section assumed that the time-averaged electron density in the sheath is zero.
However, as discussed in the previous paragraph, this is not true for the case of f -
sheaths and so the average charge density in the sheath can not be determined purely
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Figure 3.3 Results from the simulation showing ion density (dotted line), electrdn
density (dashed line) densities and the difference 7, — 7, (solid line)

plotted as a function of position, avéraged over the rf cycle.

from the ion density. Figure 3.3 is a simulation plot of the time-averaged densities in the
plasma, showing the average electron density, the ion density, and the difference
between the two — this amply demonstrates that the time-averaged charge density in the
sheath is not given by the ion density. '

In order to determine the effect of the sheath collapse on the dc sheath law
calculated in the previous section, the effect of the regular incursion of electrons on the
average charge density in the sheath must be used in the the derivation of the sheath
equation. This can be accbmplished by determining the relative fraction of the if cycle for
which each position in the sheath contains electrons. Results from the simulation indicate
that the sheath collapses for approximately 15% of the tf cycle regardless of the plasma -
parameters. The effect of the electron incursion is calculated assuming that when the
sheath is collapsed the electron density is equal to the ion density at all positions in the
sheath.

Figure 3.4 (a) is a schematic diagram showing the motion of the electron sheath
edge as a function of phase. The shading represents the regions where electrons are
present (so the plasma is charge-neutral) and the blank area represents regions where
electrons are excluded and which are therefore positively charged. For convenience the
start of the rf cycle is chosen to be at the maximum sheath expansion. The variable &
represents the average length of time during each cycle that electrons are excluded from
position x, in effect representing a temporal sheath "width" as a function of position.
Close to the electrode £ is large, since electrons are excluded for most of the cycle.
Conversely at the position of maximum sheath expansion, which electrons can diffuse to
easily, £ is small. Dividing & by 7, gives the fraction of the 1f cycle when there ére no
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Flgure 3.4 (a) The sheath width shown as a function of phase and posmon In
the sheath ny,r =n;, outside it ;s = 0 (b) dependence of w (normalised
temporal sheath width) on x/s (normalised position), assuming parabolic
sheath motion. |

electrons at x. When electrons are present 7, — 7, is equal to zero, otherwise it is equal to

the ion density, so £ /i is a measure of the ratio of the total and ion densities, averaged
over the 1f cycle

w(x)=@=-’i"—(—"—) | @321

/4 n(x)

Assuming that the sheath motion is approximately parabolic, w can be written as a

w =x\/§ , (3.22)

where Y is a constant of proportionality dependent on the fraction of the f cycle for

function of x:

which the sheath does not exist at the electrode, i.e., when the sheath is completely
collapsed. Figure 3.4 (b) shows w as a function of x. Taking results from simulations
over the whole range of parameters it has been found that the sheath collapse time
averages about 1.5 ns out of an rf period of 0.1 us, and hence y = 0.85. For planar
simulations, Vender (1990) finds the sheath collapses for 17% of the cycle, i.e.

x =0.83.
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3.1.3  Spherical rf sheath equation

Using (3.21) and (3 22) derlved in the prev1ous sectlon the average total dens1ty
in the sheath is given by

(n: - ne)=xn,-(x) .

Substituting equations (3.23) and (3.6) into Poisson's equatlon (3.1), the differential
sheath equation is found to have the form '

(92V+ 2 v __ en X~|x/s
ox* +x ox
x* r,+x ox . (1+ ) 1— 2eV(x)

(3.24)

2

Iy mig

s

which is similar to equation (3.7), but with an extra term ./x/s . Using normalised

variables 7 and z and solving as for the dc sheath, the power series solution for 7 is
given by

10 2885
n=pz7"3 (1 -9t mzz + ... ], (3.25)

where _
B2 = 9 2e2n,r? y
\10 gom;up?\s |

Re-writing (3.25) the potential at the electrode, Vs, is givén by

V3/2=2232”s’}5/295 'miuBz‘S/z i 5/2(1—m +2885 3+ -)3/2
T 10 gmuqs\ 2e r 9" 25117

k)

9 |m; Amr’(enuy)( s 2( 10 . 2885 2 )3/2
=2 |, 2 teniy)l s | (10, 2885 sl
407 \ 2e £ r, 9 2511

(3.26)

o 5

Introducing i = 47r,? (en,up) and re-arranging (3.26) the sheath equation can be written
in the form ’
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-3/2

=207 |2¢ &, V3/2(5-) (1—-1—9 + 2885 z3+...) :
9 Vm x \s 9“7 2511

-z |2¢ OVW(—“—) (1+2)",
9 \m, x s

(3.27)

where

-3
(1_1_‘2 +2885z2+...) ~1-1.667z+0.591%+...
9 “" 2511

=(1+2)" +0.036z% + O(z°)

Replacing the normalised variable z gives (1 + 2)°/3 = (1 + s/r)3/3 = [('} + s) /’} ]5’ > At

the outer electrode g =rp - s and at the inner rg = 7, + s, hence the radius of the sheath ry
can be replaced by r, =r,, s, where 7. is the electrode radius and the sign depends

elec —

on which electrode sheath is being calculated. Substituting back into equation (3.27)
gives an expression for the sheath current in -terms of the electrode radius

“ _ pr A RRE i . o3 YoM :
_407 |2¢ € Va/z( elec) (Lec_:_s) ; ; (3.28)
X ' |

9 \\m K} r

i elec

Figure 3.5 shows the values of the ion currents to the live and grounded
electrodes calculated from (3.28), using y = 0.85, plotted for different area ratios and
applied voltages. Values of Vand s were determined from the simulations. Plotted on
the same graph is the ion current determined from an equation for the bulk derived in
Section 3.3.5, and the actual ion currents measured in the simulation. Agreement
between the simulation and both sets of calculated currents is very good over most of the
range of area ratios and voltages. The largest discrepancies occur at very low currents.
This could partially be an effect of numerical noise in the simulation since at currents of
~0.5 A, fluctuations in the current are of the same order as the average value. The relative
errors in the sheath widths and potentials from the simulation also increase at these low
magnitudes and can lead to discrepancies.

A final point to note is that the ion currents at the live and grounded electrodes are
not necessarily equal, since only the total current is required to be the constant across the
plasma. However, since there can be no net accumulation of charge on the electrodes the
total flux of electrons and ions to each electrode in one cycle must be equal.
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Figure 3.5 Ion currents from the simulation plotted in comparison with theoretical
values calculated from the sheath (3.28) and bulk (3.50) equations as
functions of area ratio and applied voltage. Note that i is the current to the
live electrode and i, to the grounded electrode.
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3.2 Determining bulk plasma potentials

As mentioned in the introduction to this chapter the results from the PIC
simulations cannot be compared to analytic models published in the literature.

- Predominantly this is because these models are derived for plénar, not spherical,

coordinate systems and assume that ion transport in the bulk is dominated by collisions
with neutrals. Although this is correct for most experimental conditions the simulation
results with collisionless ions cannot be directly compé.red to results from these models
since ion-neutral collisions have a profound effect on the average ion energies in the _
plasma, the currents, and the density and potential distributions. Hence potential, density
and particle energy distributions in the bulk are determined using a modified form of the
analytic kinetic theory originally developed by Langmuir and Tonks (1929). Results
from this model are compared to the PIC simulations in Section 3.2.6; and to numerical
results from Bissell, Johnson and Stangeby (1989) in Section 3.2.8.

3.2.1  Derivation of the bulk potential equation

As in the sheath derivation, Poisson's equation (3.1), is used to determine the
potential distribution in the bulk. A schematic of the bulk distribution is shown in Figure
3.6. At a position r, the average potential reaches a peak, so 7, is used as the zero
position — ions generated at positions greater than r, will drift in the positive direction
toward the grounded electrode, while jons at positions less than r, will drift in the
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Figure 3.6 Schematic of average potential across the plasma. The live electrode
is at the left and the grounded electrode at the ri ght.
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negative direction toward the powered electrode. Hence in the following theory the bulk

is divided into the positive and negative regions — the negative region being closest to the

live electrode and the positive to the grounded electrode. The following equations are

. derived for the positive region of the bulk — that is.from r, to-rp, the position of the

gfound sheath edge, and then generalised for both directions. As will be shown léter it is
convenient to treat the two halves of the plasma separately due to the different conditions
which are generated at the powered and grounded electrodes.

Assuming that the bulk fields are small and that electron-neutral collisions quickly

thermalise the high energy electrons, the electrons can be assumed to have a Maxwellian

distribution, and so will have a well-defined temperature. The average electron density as

a function of position is therefore given by
n,(r)=ne *OM. (3.29)

where n, is the density at 7, and ¢(r) = Vp -W(r) is the difference in potential between r,
and r.

The ion density is determined by balancing the creation rate due to jonisation with
the loss rate to the sheaths. The potential on each side of r, decreases monotonically
from the peak potential, V), toward the sheath-edge potentials, V;, and so the ions are
accelerated from the position they are created out toward the electrodes at speeds
determined by the average local fields. If the number of ions created per second per unit
volume at a position z (for z > r, ) is N,, then the density at a further position r, of ions
which have travelled from z, is given by N, 4722 dz/47r2 uy, where u, is the velocity
gained by the ions in travelling from z to 7. Ions created at every position, z < r, will
contribute to the total density at r, which is therefore given by:

r 2
ni(r)=-1—zf Nz g (3.30)
rJ. )

u,(r

Substituting (3.29) and (3.30) into equation (3.1) and using r = r, + x, Poisson's
equation can be re-written in the form

en, . e * N (r, +2)*
VZ(I)(x)— 0 g HWIKT, | J'O (r,+2)

dz=0. 3.31
g, g, (r, +x)* z (331

k4

Since the electron temperature is assumed to be constant, the ionisation rate per electron,
vr will also be constant. Assuming, furthermore, that the creation rate for ions is
proportional to the electron density, so that N, , the number of ions generated at z per
second, is proportionall to ne(z), the electron density at z, then it follows that
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N, = v;n,(2) = v;ne”**™*: If jons are created at rest at position z and they make no

collisions, then their velocity at r is given by u,(r) = 2K, (n, —n,)""?, where 1, and 1,
\/ m, :
€9

" are the normalised potentials at r and z , with n = T Equation (3.31) can then be
e

simplified, by assuming quasi-neutrality in the bulk so that V2 = 0. Substituting for N,
and u; in equation (3.30) :

-n__ W m "e—n,(ro+z)2 =
e (r0+x)2 /ZkTeJ; \/77——772 dz=0. (3.32)

Following the method used by Tonks and Langmuir (1929), equation (3.32) can be

solved by changing the independent variable from? tox and introducing the change of
variable:

n =p2 Ny = P2 and p, = p sinf. (3.33)

This gives an equation of the form

e ¥ | 2 & 49 3.34
e (r +.X)Z,[) € (ra+z) dpz : . ( ‘ )

[

v, . 1 1 .
where y =—=I— is a new constant with dimensions m-1.
\/2—"‘3

Equation (3.34) is quite difficult to solve since the functional dependence of x on

p is unknown. However, if it is assumed that x can be expressed as a power series in 0,
i.e., .

x=a,+ajp+ar P +azp3+ .., (3.35)

then the integral in (3.34) can also be expressed as a power series and by equating terms
of p, the coefficients of (3.35) can be determined. Using the boundary condition p = 0 at
x =0 gives a, = 0. To determine the rest of the coefficients each term in the integral in
(3.35) is expanded in terms of up to p3 |

e’ =1-p2+..

(ro + 2)2 =r,2+2r,ap, +'(2r0a2 +a} )pz2 + 2(;*0a3 +a,qa, )pj +...
E

Jp

k4

=a, +2a,0, +3a;,0° +4a,p’+... ~  (3.36)
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Multiplying each side of (3.35) by (r, + x)? and expanding both sides in terms of p,
using the expansions given in (3.36), the bulk equation can be re-written in the form

r}+2ar,p+ (2(127;,,+ a’— r;z)pz, + 2(1;,a3,+ aa, .,—.,al.;;)p? en g e
=7 [b, + biosin6 + b,(psin0) + b,(psin6)° +..]d6

v/
=7[Ebo+blp+ ~b,p* +3b3p +.. ]

where

CJ"

al o ?

b=2 +a,r,
(al 2To)s (3.37)

by =6aayr, +a +3ay; - ar?,

by =8aia;r, +4ala, +4a;r, + 4a,r” - 24y, - 2a,r’.

/]

Equating coefficients of p from each side of equation (3.37) gives values for a; of

. __L(l_z)_i
3 3n*y’r? ) 3my’

a,= 2‘} 3(3—ﬁ+‘3—f)+ 12 (i—1). (3.38)
| nYr, 3z =& wyr,\3m :

Substituting the coefficients determined in (3.38) into equation (3.34) and converting
back from p to 17 gives x as a function of the normalised potential. Note that (3.34) is
calculated only in the positive direction (ie from 7o to the outer electrode). In the negative
direction x has the form

X.=aip- axp? + azp3 - agpt + ... (3.39)

The full solution for both directions, evaluating the numerical coefficients to four

' significant figures, is therefore

v Ll 203634 4, (00191
Ty yr (yr )

+0. 3333J n
o o

m ( 0.0478 0.0756J _ +( 0.0117 0.0743

- + ~0. 0333) . (3. 40)
(yr,) ., ()t ()
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Equation (3.40) gives the position in the bulk as a function of the normalised potential

(which is the inverse of the conventional functionality). As x is measured from the mid-
point of the plasma, r,, the radial position in the bulk is determined by r, = r, + x,. For

—--.comparison with the spherical bulk equation, the solution for the planar (symmetric) case

is
X = Xplan =i(1_'1‘77——1‘772 —'_1_"3)' v (3.41)

Note that in this case there is no dependence on r, since the system is symmetric. The
symmetry in the planar case dictates that the bulk width, the distance between r,, and the
sheath edges, is the same for both negative and positive regions of the plasma. This is
not the case for the asymmetric system, as will be shown in the next section.

3.2.2 Sheath-edge potential calculation

In order to use (3.40) or (3.41) to determine the potential distribution in the bulk
it is necessary to know the normalised potential at the sheath edges, 7,,. This can be

determined from the value of 7 at which dr/ dn'—> 0, since this is the position at which
the potential gradient starts to become extremely large, indicating the sheath edge. The
spherical equations must be solved numerically to determine this value, since there is no
simple analytic solution. The symmetric planar case, on the other hand, can be solved
analytically to give the normalised potential at the sheath edge, 7p, and the distance |
between the sheath edge and the centre of the plasma, xp. Differentiating equation (3.41)
and equating the result to zero gives

dx 2 n »
—_ = 1-in -Lin?--L.pn3)=0. : 42
an - n, ( s, =% M, — 30, ) F3 )

Solving (3.42) for 1, and ‘substituting back into equation (3.41), gives the solution for
the planar system

Mp =0857 and xp=0—‘*}’,0—5. (3.43)

To test the accuracy of équation (3.43) the calculated value for the total bulk width is
compared to the simulation for the symmetric system. Assuming an electron temperature
of 3.5 eV the ionisation rate is vy = 1.4x10° s-1 and the ion acoustic velocity ug =
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1.83x104 ms-1, and therefore ¥ = 5.36 m -1. Hence d = 2x;= 2 X% 0.405/y = 0.15 m,

which is within 10% of the simulation value of d = 0.14 m.
As mentioned previously it is not possible to calculate the spherical values for the

normalised sheathpotential, 7;, analytically. However for systems which-are reasonably
close to planar an approximate solution can be obtained by expanding around the planar
solution. Hence an equation is obtained of the form

N, =7, +—+ 0(-17} (3.44)
Yi ro ro

where c is a constant, and * refers to the relevant region of the plasma. The constants

have been determined by fitting to reshlts from the simulation and equation (3.40),
giving the values ¢ = 0.55, and ¢.= 0.2. In Figure 3.7 simulation, numerical and fitted
results for 7 are plotted as functions of area ratio, voltage and pressure.

From Figure 3.7(a) it can be seen that the normalised sheath voltage in the
negative region is fairly independent of area ratio, while the positive sheath voltage
increases by a factor of 2 over the range of area ratio. The simulation results show quite a
large degree of scatter, especially for the negative region, although there is good
agreement between the numerically determined potentials from (3.40) and those fitted
using (3.44). The scatter in simulation values of 7)—is probably due to the steep potential
gradient at the live sheath edge - an error of a few millimetres in determining the sheath
position can result in an error in the measured potential of several tens of volts. For the
numerical results it is conversely the negative region which will have the highest degree
of error, since the potential slope tends to be more gradual (see o= 15 in Figure 3.12(c))
which can make it difficult to determine the position at which dx/dn = 0. This effect turns
out to be particularly important at high pressures and frequencies, since the potential
gradients are often very shallow for these cases.

Figure 3.7(b), the normalised potential as a function of voltage, shows that both
positive and negative sheath potentials are fairly independent of the applied voltage over
the whole range. The simulation results for 77— again show a lot of scatter but agreement
between the fitted and numerical results is good. On the whole it can be said that the
fitted results follow the correct trend and provide a simple and useful means of
detérmining the sheath edge potential.

However, as pressure is increased, as shown in Figure 3.7(c), the discrepancy
between the behaviour of the simulated and calculated results becomes very large. The
simulation results, for both negative and positive sheath potentials, decrease with
increasing pressure. As the normalised potential that is plotted (1 = V/&T,), this implies
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Figure 3.7 The normalised sheath potential for negative (7;.) and positive (7;.4.)
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that in the simulation the potential drop across the bulk region decreases relative to the
electron temperature, with increasing pressure. Conversely, both the fitted and the
numerically calculated potentials increase with increasing pressure, indicating the
opposite behaviour. Further, there is increasing disagreement between numerical and
fitted results with increasing pressure. The difference between simulation and theory is
most likely due to the substantial gradients in the average electron energy across the bulk
occuring at higher pressures. This effectively means that the electrons do not have a
single well-defined temperature in the bulk region, as assumed in deriving the bulk

equations (3.40) and (3.41). Electron temperature gradients in the bulk are discussed in
more detail in Section 3.4.

3.2.3  Bulk width

To first introduce a point of terminology: when reference is made to the bulk
width the distance between r, and the sheath position is meant, rather than the total body
of the plasma , and so for the asymmetric system the negative and positive bulk widths
will generally be different. When the distance across the plasma from sheath to sheath is
referred to it is specifically called the fotal bulk width. Using equation (3.40) the bulk
widths can be determined once values for the normalised sheath potentials are known.
Simulation results for the bulk widths in the positive and negative directions, x. and x,.,
are plotted in Figure 3.8 as functions of (a) area ratio, (b) voltage and (c) pressure.

Figure 3.8 (a) shows that the negative bulk width decreases and the positive bulk
width increases with area ratio in such a way that the total bulk width remains
approximately constant. Fi gure 3.8(b) shows that both positive and negative bulk
widths, and hence the total width, are essentially independent of the applied voltage. |
However, from Figure 3.8(c) it can be seen that the total width increases with pressure.

This is because as the pressure increases so also does the density, and since the sheath
width is inversely proportional to density, the bulk width must consequently increase.
Hence the total bulk width is approximately constant as a function of area ratio and
voltage, and depends only on pressure (and frequency, although this is not plotted).

Results from planar parallel plate simulations (Vender (1990); Surrendra (1991))
also show that the sheath width remains constant with increasing voltage. This is an
unexpected result since a simplistic consideration of the sheath equation (3.19) would
indicate that the sheath width should increase with increasing applied voltage. However it
turns out that the particle density increases with voltage approximately as V3/2, roughly
cancelling the effect of the vdltage on the sheath and so the sheath width stays constant.

The reason that the total sheath width remains constant for changing area ratio has
a more complex explanation, since the live and ground sheath widths have a non-linear
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Figure 3.8 Negative bulk width, x;., positive bulk width, x,.., and the total width as

functions of (a) area ratio, (b) voltage and (c) pressure

dependence on the area ratio. However results from the simulation show that the average

power per particle as a function of area ratio is constant (which covers a range of over six

decades in the average power), indicating that the energy required per particle to maintain

the electron and ion processes in the system must be independent of area ratio. The

average electron energy is constant since T is found to depend only on the pressure,

which is held constant as area ratio is changed. (Note that this is the average electron
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energy - electrons in the sheaths can be accelerated to high energies which are very
dependent on sheath voltage/width (see Chapter 4) but their densities are very low and so
they contribute little to the average energy). The average ion energy on the other hand

~...depends entirely on the sheath parameters; since ions-in the-bulk-have-energies-of around -

0.025 eV, so even if only 1% of the ions are in the sheaths they still contribute to nearly
100% of the total energy. The sheath potential determines the total energy each individual
ion can gain, and the ratio of the total sheath width to the electrode separation is, to first
order, a measure of the fraction of energetic ions in the plasma. So the product of the
total sheath width and the voltage is roughly equal to the average energy per ion and from
the previous arguments must therefore be constant. Hence for constant applied voltage
the total sheath width must also be constant. As the average power per particle increases
linearly with applied voltage a similar argument can be applied to also explain constant
bulk width as a function of applied voltage. Note that this simple explanation ignores the
effects of spatial variation in ion density and the spherical geometry.

3.2.4 Averagé Electron Temperature

In order to calculate the potential distribution in the bulk it is necessary to know
the electron temperature - this gives the value of ¥ needed to calculate N5 and is also -
used to re-scale the normalised potentials back to real values. In the derivation of the bulk
equations in Section 3.2.1 it is assumed that the electron temperature is constant across
the bulk. For the symmetric case at low pressures the temperature gradients are small and
so this is essentially true, therefore the average electron temperature should depend only
on the neutral pressure and the volume in which ionisation takes place within the plasma.
This can be seen by rearranging equation (3.43) to obtain

v, _ 0.405
V2u, x, ’

o

y= (3.45)

where, as previously noted, vyand ug are functions of electron temperature. The
equation for the ionisation rate, vy, is simply

Vi = Ny O(E) uz, (3.46)

: 8ekT, . . .
where uy, = * is the average thermal electron velocity, Ny, is the number of

m

(4

neutrals, and ¢ is the energy dependent cross-section. By convolving a Maxwellian
electron distribution for temperatures up to 60 eV with the ionisation cross-section for
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| hydrogen, the average cross-section can be expressed as a function of kT,. Appendix A

details the full derivation, according to which the cross-section can be written as
o(kT,) = 0, e *"/™¢ where 0, = 8.2x10-21 m2 and &;,, = 13.6 V. Substituting for the

-ionisationrate-and the-ion-acoustic velocity; (3.45)-can be rewritten in terms of kT, :

kT, = S , (3.47)

d
I N —=_|+K
( n.0.81«/§)

Tm
e

where K = ln[ o, 8mi J =—42.03 for hydrogen plasmas.

For a background pressure of 20 mTorr N, = 6.4x1020 m-3; and from Section
3.2.3 d = 0.147 m, essentially independent of area ratio and voltage. Therefore 347)
gives a value for the electron temperature of kT, = 3.5 ¢V, independent of area ratio and
voltage. It will however have some pressure and frequency dependence, since d is not
independent of these parameters. From simulation results the average electron energy is
approximately constant for all area ratios and applied voltages and is equal to 5.5 eV. The
simulation has 3 velocity components, therefore asuming a Maxwellian distribution and
using &y = 3/2 kT, the temperature is 3.7 eV.

Equation (3.47), valid for planar systems, determines a single electron
temperature for the entire bulk region and is simple to calculate. However, results from
the simulation show that the average electron energy in the bulk can be quite strongly
dependent on position, and that the electron distribution can deviate substantially from a
Maxwellian distribution under certain conditions. In Figure 3.9 the electron energy,
averaged over the of cycle, is plotted as a function of position in the plasma (the live
electrode is at 0 and the grounded electrode at position 0.2 m). Plots are shown for o=
1,2, 6, and 15, where «is the electrode area ratio. The plots show that the average
energy is high in the sheath region with a very steep gradient at the position of the:
maximum sheath edge, and decreases rapidly to a more constant value in the bulk. Both
the peak energy in the sheath and the bulk value increase with increasing area ratio. The
high electron energies in the sheath are due to interaction with the moving sheath edge,
this phenomena is discussed further in Chapter 4.

Examining the bulk energy distribution on an expanded scale in 3.9(b) it can be
seen that even in the bulk there is a noticeable gradient in the average electron energy,
especially at larger area ratios. Clearly the electron temperature does not have a single
well-defined value, or even two distinct values for the different bulk regions, in fact there
is a gradient across the entire bulk region, sloping down from the live to the grounded
sheath. This indicates that the assumption of a uniform constant Maxwellian electron
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temperature in the initial derivation is too simplistic. However, for plasma parameters
where the gradients are not 00 large a reasonable first approximation is to model the
temperature gradient using two different average temperatures for the positive and

_.hegative regions in the bulk calculation. Including a temperature gradient in the bulk-—

would require a numerical solution of the bulk equation (3.31), and so would not give
simple analytic expressions for the plasma parameters which was a major aim in deriving
this model. Using two temperatures in some measure compensates for assuming that k7,
is independent of position in the original derivations in section 3.2.1, while maintaining
the simpler equation. In practice this turns out to work well except for the high pressure
limit of the parameter range where temperature gradients are large.

Conservation of charge is used to derive an expression for the two bulk
temperatures, noting that the creation rate in each region of the plasma must equal the
loss rate to the corresponding electrode. Hence the ionisation rate per electron multiplied
by the 1ntegra1 of the density over the volume of that region of plasma must equal the
total jon flux at the corresponding sheath edge

J' U, n(@An(r, £ 27 dz = dn(r, + x V().  (348)

Assuming that the density distribution in the bulk is parabolic, the density can be written
as a function of position x : n(x)=n [1 -1-¢ )(x/x )2] where { =e™, n; is the

normalised potential at the sheath edge and n, is the peak density (see Section 3.2.6).

Substltutmg this expressmn into equation (3.48) together with (3 46) for the ionisation
rate gives:

e ol /ie’;Tj 1-(1- c)z/x)][ fdz=(r, tx)'n C\/-
N0, /nme[—amx L1+ 0, +O(x3)]—-f7(n £275, +x)

Rearranging this equation, and assuming that x%/r.> — 0 (i.e., the bulk width is smaller

than the radial distance to the centre - true for all conditions presented in this thesis), then
kT, can be written in the form

£

kT, = ion (3.49)
h{_&x <2+c:i>+(1+c+)xs+/r) K
g, 1+2x,, /r
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The results from equation (3.49) are plotted in Figure 3.10 in comparison with

simulation results. The straight line is the temperature predicted by the planar equation,

which is close to the simulation temperatures in the positive region of the bulk, but is

often very different from those in the negative region. Figure.3.10.(a) is a plot of the . -

temperature as a function of area ratio, and shows that the calculated temperatures are

very close to the simulation values, giving agreement to within 5 - 10%. Intriguingly

most of the difference between the two results seems to be due to a constant off-set of

about 0.2 - 0.5 eV between the simulation and calculation rather than random errors.

Temperature as a function of voltage plotted in 3.10 (b) shows a similar agreement, with

both simulation and calculated results showing the same small difference.
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| Figure 3.10 The electron temperature for negative, kTe., and positive, kTe, bulk

regions, with simulation results plotted in comparison to calculations

from equation (3.49). The solid line is the planar electron temperature,

3.5 eV. Temperatures plotted as functions of (a) area ratio (b) voltage
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One of the difficulties in comparing simulation and calculated values is due to the
fact that the average temperature is not actually a well defined concept. Equation (3.49) is
derived assuming the idealised case in which the two bulk regions have two separate
constant temperatures. As mentioned previously, this is not the true situation — inreality -
‘the temperature increases from the centre position, r,, to the sheath edges. The gradient
is fairly flat for the positive region of the plasma, and relatively steep for the negative
region although in both cases the actual dependency is a function of all the plasma
parameters. The "average” value from the simulation is actually obtained by fitting results
numerically calculated from equation (3.40), to the potential distribution found from the
simulation. The electron temperature is chosen so that the distribution has a good fit at
the sheath edges. As the temperature increases toward the sheath edges this method tends
to fit the high end of the temperature gradient and thus results in higher average
temperatures being accredited to the simulation. Results from the simulation also show
that the temperature gradients increase with gas pressure, and so it is harder to find a
good "average" temperature at higher pressures (> 50 mTorr). |
This method also turns out to be extremely sensitive to the mid-position r, — if ,

is moved closer to one electrode then the potential gradient will be steeper (to drop the
same potential over a shorter region) and so a higher electron temperature will be
required to give a good fit to the potential at the sheath edge. This further complicates
matters since it is often difficult to determine the exact position of r,,, as is discussed in
the next section. ' '

3.2.5  Mid-position

The relationship between the mid-position, r,, and the electrode area ratio ¢,
applied voltage V,, pressure p and applied frequency Jrr has proved difficult to quantify
precisely. Partly this is due to the nature of the potential distribution — for many
conditions, typically low voltages and area ratios, the bulk potentials are very flat in the
centre and so 7, is indeterminate over a range over 2 - 3 cm. This in turn affects the
determination of the average bulk temperature, as mentioned in the previous section. For
all of the applied parameters r, is fairly close (within a few centimetres) to the geometric
centre of the plasma and so it is, to a first approximation, a function of the electrode
radii. Flgure 3.11 (a) shows 7, plotted in comparison w1th Tcentre = —(ra +rp)asa

- function of area ratio. At small area ratios the agreement between the two results is good

but at high area ratios r,, is consistently less than Ycentre- The same effect occurs for high
pressures as shown in 3.11(b).

This is due to the non-Maxwellian behaviour of the electrons. Looking at Figure
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Figure 3.11 The position of peak voltage, r,, plotted in comparison to the central
radius, 7censre, as a function of (a) area ratio and (b) pressure

3.9 it can be seen that the average electron energy is much higher in the region of the live
sheath edge. As mentioned in Section (3.2.4) this results in enhanced ionisation in the
negative half of the plasma, and so to balance the ion currents to each electrode the
volume in which ionisation can take piace in the negative region must decrease, hence r,
moves closer to the live electrode. This effect is more noticeable at high area ratios and
high pressures, since the temperature gradients are much larger in these cases. In order to
determine reasonable values for 7, an iterative technique to fit both electron temperature
and r, must be used. This is outlined in the next section.

3.2.6  Fitting the potential distribution

Having obtained equations for the potential at the sheath edge, the electron
temperature and an approximation for the mid-position, the potential distribution in the
bulk can now be determined as a function of the system parameters. However to solve
for the potential distribution both the electron temperature and the sheath-edge potential
have to be known concurrently since they depend on each other. To solve the equations
simultaneously an iterative technique is used. Starting with an initial electron temperature
of 3.5 eV (the planar temperature), 75 can be calculated from equation (3.44), and then
used in (3.40) to determine the bulk widths. Then the electron temperature can be
recalculated from (3 49). Determining the sheath widths from another source (say from
the sifnulation, or using the sheath equation (3.28)) then a new value for mid-position r,
can be calculated from the sheath and bulk widths (i.e., r, = ré +Sg+X. Orrp=rp-Sp-
x4+). This process is continued until kTe;, Ny.» X,, and r, reach steady-state values. For

relatively flat potentials in the bulk and small electron temperature gradients, this process
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only requires a few iterations. However, for large temperature gradients it can take a long
time to converge to a solution, and in a few cases it will not converge at all unless the
parameters are initialised with specifically chosen starting values.

_ In the following three figures the potential distributions are plotted together with
the results from the simulation. The calculated normalised potentials are converted back
to volts using the appropriate electron temperatures and are plotted relative to the peak
potential determined from the simulation. Figure 3.12 shows the fits for three different
area ratios: (a) =1, (b) @=6 and (c) a= 15. It can be seen that the qualitative
agreement between simulation and calculated results is very good. The calculated results
have the correct slope of the potential gradient for both regions, with higher temperatures
in the negative region of the bulk. There is good agreement between simulated and
calculated values of r,.and the potentials at the sheath edges. Note that r, moves toward |
the live electrode and kT, increases with increasing area ratio. However a detailed look
at the potential fits, even at = 1, shows there is a slight discrepancy in the middle of the
fit between r, and the sheath edge. This comes about from using an average temperature
rather than a temperature gradient in the bulk calculation. The potentials are effectively
fixed at the sheath edges and at r,, so differences in the fitted and simulated potentials
between 75 and r, are due to the temperature gradient in this region. With higher area

‘ratios, which have steeper potential gradients, the mismatch in the fit is more noticeable.

In Figure 3.13 the potential distribution is plotted for three voltages (a) 100 V (b)
500 V and (c) 5000 V for area ratio, & = 6. Much of what has been said for the potential
distribution as a function of area ratio is also applicable here — for low voltages, where
the temperature gradients are small, the fits are better than at high voltages. Discrepancies
between the simulation and the analytic model are of the order of a few volts and overall
the qualitative fit is very good. ‘

Figure 3.14 shows the fits for pressures (a) 10 mTorr (b) 50 mTorr and (c) 100
mTorr. The fit to the simulation is very good at 10 mTorr, but decreases at higher
pressures, especially in the positive bulk region. This is due to increasing temperature
gradients in the system, for which the approximation of using an average electron
temperature breaks down. 100 mTorr probably represents the limit of validity of this
derivation of the bulk potentials. To derive potentials at higher pressures it would be

necessary to include temperature gradients in Poisson's equation, which would then have
to be solved numerically.
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3.2.7  Fitting to the bulk density

Assuming a Maxwellian distribution for the electrons in the bulk, the density

- distribution can be described by n(x)=n_e™" (equation (3.29)). However it is Sometimes

more convenient to have the density as a function of position rather than potential (as
when deriving the electron temperature in Section 3.2.4 and the bulk ion current in
Section 3.2.6) and from equation (3.30) it would appear that the density distribution
should be proportional to (x/xs)2. Looking at the simulation results the density is indeed

found to have a parabolic dependance on position and can be empirically fitted with a
function of the form '

n(x)=n,[1- (1~ Ox/x,)'] (3.50)

where {'=¢™, so that at x = x; the boundary condition n,=n,e™ is obtained.

The fit for an electrode area ratio of 6 is shown in Figure (3.15), which compares
the simulation density distribution with the fit taken from equation (3.50), and with the
Maxwellian density distribution. The parabolic fit is very good except' close to the
grounded sheath edge where the potential gfadient is smaller; interestingly (3.50)
provides a better fit in the negative region than the Maxwellian density eqﬁation. Overall

4 o
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Figure 3.15 Density in the bulk showing simulation results (solid line) fitted with

parabolic equation (3.50) (dotted line) and the maxwellian density
distribution (dashed line), for ¢ =6
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(3.50) fits the simulation results to within about 10% for all area ratios and voltages, but
doesn't fit quite as well to the high end of the pressure scale due to the steep gradients in
the electron temperature (neither Maxwellian nor parabolic fits work well in that case).

3.2.8  Ion Current Calculation

One of the main plasma parameters to be determined from the bulk calculatlons is
the ion current at the sheath edge. This can be then used in the sheath equation to
determine the average potential across the sheath as a function of the maximum sheath
width. As with the electron temperature, the ion current is determined by balancing the
creation rate of ions within the bulk with the loss rate to the walls (otherwise the bulk
density would increase and the system would not be at steady state). Hence the ion
current is essentially a function of the ionisation rate and the plasma density. Ions created
in the bulk must be lost to their local electrode, as the ion drift velocity is determined by
the average local potentials which monotonically decrease from r, to the sheath edges.
Therefore the total current at each sheath edge is determined by a volume ihtegral over the
total number of ionising collisions in the corresponding bulk region, i.e.,

L(x)= feni(z) v()4n(r, xz)’dz . o (3.51)
0 .

This equation can be simplified by assuming that v; is independent of position — i.e., the
temperature gradients are assumed to be small, so that the electron temperature is
constant in each half of the bulk . Equation (3.50) is used to fit the spatial variation of the
density, so that the integral in (3.51) depends only on x (the Maxwellian density,
equation (3.29), is not used since it is dependent on the bulk potential which would make
(3.51) much more complex to solve). The current at the sheath edge, iy, is then given by

i =4mevn,x,,(0.8087, £0.712r,x,, +0.218x,,?). | (3.52)

The accuracy of the fitting is shown in Figure (3.4) where the ion current determined
from (3.52) is plotted together with results from the simulation and equation (3.28).

The ion current to each electrode depends on the volume ionisation rate in the
region of the bulk close to it. This in turn depends on the density in the bulk, the electron
temperature, the potential distribution in the bulk and so on. The ion currents calculated
from equation (3.52) are found to be particularly sensitive to the position of r,, since
ions created at radii < 7, will go to the live electrode, while those at radii > r,, will goto
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Figure 3.16 Ratio of live to grounded ion currents as a function of area ratio. The
dots represent results from the simulation, and the line was fitted using
least squares methods.

the grounded electrode. The ratio of the ion currents at the electrodes is found to be
relatively independent of applied voltage and pressure, and is mainly determined by area
ratio and frequency. The dependence on area ratio is shown in Figure 3.16.

With increasing area ratio r, moves closer to r,, since the average potential peaks
closer to the inner electrode at higher area ratios and has a long tail-off toward the outer
electrode. This can be seen in the bulk potential plots in Figure 3.12. This causes a
decrease in current to the inner electrode relative to the current at the outer electrode, due
to the decrease in the bulk region where ions can be created. However at the same time
the average electron energy blose to the live electrode is increasing with area ratio (see
Figure 3.9), and so the ratio of the ion currents represents a balance between these two
processes, leading to the relationship plottéd in Figure 3.16

3.2.9  Comparison with other numerical models

Bissell, Johnson and Stangeby (1989) published a review of two kinetic and two .
fluid models of a one-dimensional collisionless bulk plasma. These models were used to
examine the steady-state flow of plasma to a boundary, with particular application to

- fusion plasmas. Since in fusion plasmas the ionisation fraction is typically large and the

ion temperatures are also large this means that some of the assumptions used in the
models will not be applicable to the PIC results. They do, however, include some results
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for zero ion temperature, and these can be compared to results from the simulation and
model derived in this chapter. |

The kinetic models (Bissell and Johnson (1987) and Emmert et al ( 1980)) are also

.. based on the derivation by Tonks and Langmuir (1929), the main difference inthe - - -

models being that jons are no longer assumed to be created cold (since in fusion plasmas
the background neutrals have temperatures of the order of T, ) and so a source function
which models the ion temperature is included. This complicates the equations, requiring
the models to be solved numerically rather than analytically. The two kinetic models are
differentiated by different source functions. Since jons in processing plasma are created
cold the limit as k7; — 0 is used, for which both models give the same answer.

The two fluid cases are for an isothermal and an adiabatic model. The isothermal
model] assumes that the ion pressure is isotropic and the ion temperature is constant, i.e.
P||=p. = nkT;, while the adiabatic model has different parallel and perpendicular

>

temperatures. The fluid models were made to be collisionless by leaving out the explicit
collisional terms in the momentum and energy equations, although this does leave
implicit ion-ion collisions in the adiabatic model due to the closure condition used.

Analytic |PIC |
Kinetic Adiabatic |Isothermal | Model Simulation
o 0.854 0.783 0.693 0.857 0.88
n/n,  lo426 0457 0.5 0.424 0.35
s 1144 1.068 1.0 1.177 1.384

Table 3.1 Values of normalised potential, 75, density ratio n, /n_, and ion velocity

<v>/up, at the sheath edge are listed for the kinetic, adiabatic and isothermal
models from Bissell ez al in comparison to the analytic model presented in
this chapter and the simulation results. '

Results from the T; = 0 case for the different models in Bissel et al are compared
with simulation and model results with an area ratio of 1 in Table 3.1. The comparison is
made between the normalised potential at the sheath edge, 75, the density at the sheath
edge normalised to the peak density, n, /i, and the average velocity at the sheath edge
normalised by the ion sound speed, <v>/up. Obviously results from the kinematic model
used by Bissell ez al (1989) and the model derived in this thesis are very similar, which
is to be expected since at T; = 0 they are essentially the same model (although the model
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from Bissell et al is solved numerically rather than analytically). The agreement with the
adiabatic model is extremely good, while the isothermal model follows the general trend
correctly. Overall the agreement between the models and the simulation is to within 20%.

3.3  Sheath scaling laws

The ion current calculated in section 3.2.7 can be used in the sheath equation
(3.28), to determine the sheath voltage and width. However, further equations relating
the sheath widths and average sheath potentials must be obtained to act as closure
conditions for the model, and thus fully quantify the plasma. Once these equations have
been found the sheath and bulk equations can be solved concurrently to determine the
average potential and density distributions, the ion currents at the electrodes, the electron
temperature(s), and the ion energies at the electrodes.

In Section 3.3.1 the relationship between the sheath width and average voltage is
determined from the ion power which is derived from the total applied power to the
simulations. In Section 3.3.2 the voltage division is determined from the sheath
capacitance relating the sheath width to the rf voltage across the sheaths. Finally in

Section 3.3.3 an equation for the peak density is derived empirically from the
simulations. -

3.3.1  Capacitive voltage division between the sheaths

In order to determine the average ion energies at the electrodes it is necessary to
determine how the voltage is distributed across the plasma, since voltage division
between the sheaths is complex in the asymmetric system and depends on all the 'applied
parameters. Using a simple equivalent circuit model of the plasma, at frequencies of
around 10 MHz and pressures less than 1 Torr the sheath impedance is predominantly
capacitive. Therefore treating the sheaths as two capacitors in series the voltage across
each sheath can be determined using capacitive division, where the individual sheath
capacitances are calculated using CV = Q. Due to the moving electron sheath the charge
in the sheath is constantly changing during the cycle, and so this equation must be
differentiated with respect to time. Assuming that the sheath capacitance is independent
of the rf period, the total rf current is a function of the changing voltage only:

VW 90 _

En % I(v), (3.53)
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Note that this equation uses the total discharge current, I . In the sheath I is mainly in the
form of a displacement current, except for the brief period each cycle when the sheath
collapses and electrons can enter. The 1f current is approximately sinusoidal in shape (see

Figure 4.13) and has the same period as the applied voltage with a phase difference of ¢.

Hence the rf current has the form I(¢) = I, sin(a)t + ¢); substituting this back into
equation (3.53) it is found that

dsinwt dsin(wt + ¢)
CcvV =1 s
L d ot
c=z (tanwzcos ¢ +sin @). | (3.54)
wV , ‘

f

where Vris the amplitude of the applied' voltage. For a purely capacitive system (i.e., if
sheath impedance purely capacitive and the bulk impedance negligible) then the phase
difference between the current and voltage, ¢, would be equal to 90° and (3.54) would
simplify to C =1, /wV,,. However results from the simulation indicate that this is not
the case, although it is often assumed so in deriving the electrical response of the sheath.
Instead the phase difference is found to have an average value of ¢ = 73°, essentially
independent of the input parameters. The high value of ¢ indicates the system is
predominantly capacitive as expected, although in Chapter 4 it is shown that both the
sheath and bulk also have a resistive component. Experimental measurements by
Bletzinger and Flemming (1987) in argon show that the phase shift between current and
voltage is relatively independent of pressure in the range 0.1 - 1 Torr, varying slowly
between 80 to 70° (for pressures > 2 Torr ¢ drops to ~40°). Substituting for ¢ in
equation (3.54) gives

Irf
C =—2—-(0.29tan wt +0.96). (3.54)
WV, _

Hence C is not independent of time, as previously assumed. Simulation results show that
the capacitance is very close to constant for most of the cycle, but twice per cycle at

wt = 7t/4 and @t = 37/4, for periods of about 150 ns the capacitance suddenly becomes
very large. These times correspond to the periods of sheath collapse at the live and
grounded electrodes, at which time the sheath width effectively goes to zero and so the
capacitance becomes infinite. '

A geometric value for the sheath capacitance can also be determined by relating

the sheath to a real capacitor of the same dimensions. The boundaries of the sheath are
chosen to be the electrode on one side and the position of maximum sheath width on the
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other (to include the entire exclusion zone for the electrons). Hence the capacitance in
spherical coordinates can be calculated using

_4ner,,.r

C 0 elec”.sw,.v.. [ . (356) e e e e

s

where relec is the electrode radius, r, the radius of the maximum sheath extension and s
is the maximum sheath width (= 7y - r.c). Equating equations (3.55) and (3.56) relates
the sheath width to the rf voltage across each sheath, that is

_dnr,(r,+s,) _ K I, (3.57)(a)

’Ca a ’
s, leaI
_dnn(n=s) _ Ly
C, s, K, wIVb l , (3.57)(b)

where 7, and ry, refer to the radii of the powered and grounded electrodes respectively,
and |V,| and |V3| to the amplitude of the sheath voltage at each electrode (the sheath
voltage is assumed to vary sinusoidally over the rf cycle). This assumes that in equation
(3.54) (0.29tan wz + 0.96) = Kk = constant for the whole cycle and neglects the period in
which the capacitance becomes large, since this relates to only 1.5% of the cycle.
Averaging simulation results over area ratio, voltage, frequency and pressure the two
constants are found to be k, = 0.765, and xp = 0.59.

Using capacitive voltage division the ratio of the sheath amplitudes can be
determined from equations 3.57(a) and (b):
1A

a

=1297¢5%| 12%/% | (3.58)
|V,,| s,\1+s,/r,

The results from (3.58) are plotted in Figure 3.17, in comparison with results from the

simulation as a function of area ratio. The correlation is very good except at area ratio 1,
where the method of averaging breaks down due to the large areas of the sheaths (10 m
radii electrodes are used in this case). In the case where sp, << rp and s, << r, (i.e., at

large electrode radii, so small area ratios) from equation (3.56) |V, |/|V,| a2, In
- . : S

Section 4.1 it is shown that the ratio of the sheath widths (neglecting density effects) is
also approximately proportional to the area ratio, and hence the voltage ratio should
roughly depend on the area ratio squared. This proportionality is shown in Figure 3.17,
and while the approximation is fairly rough it is seen to follow the correct trend of the
data. The middle range values are larger than o due to neglecting the effect of the sheath
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Figure 3.17  Ratio of the sheath voltage amplitudes from the simulation (circles)
plotted in comparison with results from equation (3.58) (crosses). The
solid line shows proportionality to o2 '

density, while at high area ratios the voltage ratio saturates, as the sheath width
approaches the magnitude of the electrode radius.

Equation (3.58) relates the amplitude of the rf voltage across each sheath, but
does not determine the relationship between the time-averaged sheath voltages. It is
generally assumed that the rf and dc components of the sheath voltage ate linearly related
provided the 1f voltage is greater than 20V for pressures of around 10 - 100 mTorr
(Godyak et al(1991b)). The simulation results for the average sheath voltage as a
function of the rf sheath voltage for the live and grounded electrode are plotted in Figures
3.18(a) and (b). Note that the potentials plotted here are measured between the position
of peak potential (at r,) and the electrode rather than the sheath edge and the electrode,
since the former is easier to measure and there is only a few volts difference between the
two methods. The linear relationship between rf and dc (average) voltages holds well for
both electrodes, except at very low voltages at the grdunded electrode. This is due to the
development of a positive dc offset on the plasma potential at low voltages, as described
in Section 4.1

To understand why the live sheath voltage is so much greater than the grounded
sheath voltage in asymmetric geometries (at hi gh area ratios it can be 70 times larger)
consider first of all a symmetric system, which has equal sheath voltages and widths. If
the area of one electrode is increased then it follows from C o A/l that the sheath at the
larger electrode will have a larger capacitance and hence a smaller proportion of the
voltage will be dropped across it. Consequently, for the system geometry described in-

87




—~
-]
-

5000 1

T

4000
——V =092|V |

3000 [

2000 |

1000 |

PR TN ST S S

0 1000 = 2000 3000 4000 5000
rf Sheath Voltage (V)

Average Sheath Voltage (V)

~

b)
500 Tt

400 |-

——V, =89+078]V, |

300 |-
200 F

100 |

0 PR TRET R DU ST PSSR R T BRI
0 100 200 300 400 500 ,
rf Sheath Voltage (V)

Average Sheath Voltage (V)

Figure 3.18 The average sheath voltage plotted against the rf sheath voltage for (a)
live and (b) grounded electrodes |

this thesis, the proportion of the applied potential that is dropped across the live electrode
sheath will be larger than that at the grounded sheath, purely from consideration of
capacitive division. Thus, as the voltage ratio increases, from equation (3.58) the ratio of
the live to grounded sheath widths, s, /s3, must also increase. Now from Section 3.2.3
the total bulk width is constant (with respect to area ratio) and hence the sum of the two
sheath widths must also be constant. Therefore as the live sheath width increases the

grounded sheath must decrease until an equilibrium between the potentials and the sheath

widths is reached. These values are not easily calculated since as the sheath width
changes so also does the sheath capacitance, and therefore the sheath voltage.

Now consider the average (or dc) voltage across each sheath: this must be at least
of sufficient magnitude to contain the electrons and maintain the plasma, and its lower
limit can therefore be assumed to be the floating potential. The floating potential Vris
simply the potential of a plasma in an earthed container and it is found to be proportional
to the electron temperature (see Vender (1990), pg 55): for a hydrogen plasma Vf~ 4kT,.
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Assuming a linear relationship between rf and dc voltages (as shown in Figure 3.18), the
floating potential in effect places a lower limit on the tf voltage. As the area ratio is
increased the ratio of the rf sheath voltages must also increase (since |V,| increases and

.|V decreases), but from the above argument it is expected that at very large area ratios-

the rf voltage ratio must reach a steady-state value since the sum of the sheath voltages
cannot exceed the applied voltage and the rf ground sheath voltage will be limited by the
floating potential. This in turn places a restriction on the minimum sheath width at the
grdunded electrode via the sheath equation (assuming the ion current remains constant,
or at least does not increase). Results from the simulation show this saturation in both the
voltage and sheath ratios at very large « (see Figures 3.17 and 4.y), but also indicate that
the mechanism is more complicated than assumed above, since at high area ratios the
plasma potential develops a positive dc offset. This retains the electrons even as the 1f
voltage across the grounded sheath continues to decrease, by allowing the rf voltage
amplitude across the sheath to be smaller than the average voltage (i.e., there is a
breakdown in the linear proportionality between rf and dc voltages at very low Voltages).
However, even with this effect the ground voltage cannot keep decreasing and at very
large area ratios the ratio of the rf sheath voltages saturates as shown. - |
At the live electrode a large negative dc potential is created by charging the circuit
capacitor negatively in the first few microseconds of running the plasma. This limits the
maximum excursion of the live electrode voltage to approximately the magnitude of the
bulk plasma potential, and thus reduces the number of escaping electrons so that electron
and ion losses balance over an rf cycle. In actual fact simulation results show that,
contrary to popular belief, the electrode potential can fransiently reach values which are
much larger than the bulk potential (see Section 4.1 for a detailed results). This is
because under certain conditions the fields at the powered electrode are changing so
rapidly (much faster than the plasma frequency) that inertia prevents electrons responding
instantaneously to the fields. Therefore a positive sheath potential develops in order to
accelerate the electrons out of the plasma and thus balance ion and electron currents
during the cycle. This gives the electrons a beam-like velocity distribution, which has
previously been observed in planar simulations (Vender and Boswell ( 1992)). The effect
is magnified when the sheath width and potential are large and so is particularly

~ noticeable at large area ratios and voltages. The ions are unaffected by the positive

excursion of the sheath potential since they only react to the cycle-averaged fields due to
their large mass. ‘ '
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3.3.2 Ion Power Calculations

An alternative method of determining the average sheath voltage, especially when
“the voltage dropped 4cross the sheath is small and the Tinear relationship between rf and

dc no longer applies, is to use the ion power. Power derivations are discussed in detail in
Chapter 4 and here it is sufficient to say that the power dissipated by the ions at each
electrode is related to the ion current at the electrode and the sheath potential, by:

Pion=1iq Vg +ip Vp, ' (3.59)

For o= 1 the currents and voltages at each electrode are equal and so (3.59) becomes
Pjon = 2i4 Vg; and for o > 2 the ion power at the live electrode is approximately an order
of magnitude greater than power dissipated at the grounded electrode, therefore (3.59)
can be effectively represented by Pjop, = iy V,, . From (4.27) the relationship between the
total power dissipated by the plasma and the ion power is given by Py, = P;,4/2, so the
average live sheath potential can be related to the total power and the ion current by

P tot

Va=0.99 == fora=1

P tot

V, = 0.495 Lrot fora>2 (3.60)

Note that this method is only useful for finding the average potential at the live electrode,
except for o= 1 where both live and ground potentials are equal.

3.3.3 Peak Density Measurement

In order to calculate the ion current from equation (3.52) it is first necessary to
determine a value for the peak density in the plasma. The steady-state plasma density is a -
result of the balance between production rate through electron ionisation collisions, and
the loss rate of particles to the walls. Consequently the density is expected to depend in
some complex fashion on the deposition of power into the electrons, ionisation cross-
section, neutral gas pressure, system volume and ion currents to the walls. Simulation
results show that the power per charged species Py / N, dissipated by the plasmais a
function only of the applied voltage, and is therefore independent of the other plasma
parameters. The dependence on voltage is shown in Figure 3.19. This plot shows that
the data appears to have a different dependance on Vs for low and high voltages — for

Vi <500 V Pyt /N o< VrfO -3, while for V,r > 500 V Pwt IN o< Vyr. Fitting to the
simulation results gives the equations:
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Figure 3.19 The applied power per plasma species as a function of the applied voltage.

o

]\;w =2.8x107°V, " v <500V, (3.61)(2)
+
; =12x10™V, Vv, >500V, . B6Db)

where N is the number of ions/electrons in the plasma.

The difference at low and high Voltages cotild indicate different mechanisms by
which power is transferred to the particles, or possibly just a lower limit on the power
required to balance loss rates and maintain the plasma. Experimental results in argon
(Godyaket al (1991b)) show a similar change in the power/voltage behaviour with Pyt o<
Virat low currents and Py, o Vrfz at high currents. :

Equation (3.61) therefore relates the input power and the applied voltage, known
parameters of the plasma, to the total number of particles in the plasma. This can then be
related to the average plasma density by dividing through by the system volume. The
average plasma density is found by integrating over equation (3.50). The equation can be
simplified by assuming the system is relatively symmetric, then from equation (3.43)
(1-{=1-¢"P=0.776, giving

_n [ —(1— 12
nav’;*L/ZJ; [1 a C)(xs] ]dx

—_— nO
L2

0.808x,, (3.62)

~ where L is the system length. Assuming L/2 = x_, then re-arranging (3.62) gives
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Figure 3.20 The peak density plotted as a function of the average density, showing
simulation results (dots), and fitted equation (line).

ny=1.24 Navg. Plotting the peak density as a function of the average density in Figure
3.20, least-squares fitting gives the relationship between the two densities to be -

no = 1.2 ngyg over the entire parameter range, in extremely close agreement with the
previous determination. Thus the average power dissipated by the plasma, the applied
voltage and the system volume can be used to determine the peak density, giving values -
which are within about 20% of the simulation results.

- 3.3.4 Bulk and sheath calculations combined

Using the above derivations it is possible to iteratively solve both sheath and bulk
equations. Using as given input parameters the electrode radii, gas pressure, input
power, and the source voltage and frequency predictions for the potential and density
distributions in the bulk, electron temperature, plasma density, ion currents to the
electrode, sheath widths and dc and 1f sheath potentials can be obtained. As for the bulk
case a set of starting conditions are guessed at and the equations are iterated until the
solutions reach a steady-state. Note that the system is complex so it is sometimes difficult
to obtain convergence, and both convergence and accuracy can depend on the sequence
in which the equations are applied. Good results can be obtained for most of the range of
area ratios and voltages at low pressures (< 50 mTorr). The results for the standard case

- a=6, Vir= 1000V, p = 20 mTorr and Jrr=10 MHz — are compared to the simulation

results in Table 3.2.
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Simulation Model % difference

n, (m-3) 5.0x 1014 4.4 x 1014 -12%
s (m) 0.0463 0.05 | +8%

s (m)  [l0.0074 o012 +62%
is  (A) 0.44 0.36 -18%
i, (A) 0.83 0.8 3.6%
iV, (V) 932 963 +3.3%
de Vg (V) 857 854 -0.3%
rfVy, (V) 32 38 +19%
de Vi, (V) 27 38 +41%
Ne. (m3) 0.765 0.78 +2.0%
Nee (m-3) 1.32 1.32 0%

ro  (m) 022 022 0%

Xs.  (m) 0.035 0.0305 _13%
Xs» (m) 10.108 0.106 2%

kT,. (eV) ’4.32 4.55 +5%

kT.. (eV) 3.7 3.68 0.5%

Table 3.2 Comparison between model and simulation for plasma parameters at the
conditions & = 6, V,¢= 1000V, p = 20 mTorr and f,r= 10 MHz.
In general agreement over the range of values is extremely good for this set

In general, agreement over the range of values is extremely good for this set of
conditions, with, in most cases, the difference between the simulation and the model
being less than 10%. The bulk parameters show even greater accuracy. The largest
differences appear in the dc voltage at the grounded electrode, dc Vj, and the grounded
sheath width, sp. As previously discussed in Section 3.3.1, the empirical relationship
between dc and rf Vbltages does not hold well at low voltages. The sheath width
calculation is dependent on the dc sheath voltage and so is also inaccurate at these values.
Furthermore the simulation measurements have large errors at these low values, since
noise levels are large relative to the average values presented here. Overall this model
works extremely well in predicting the bulk and sheath parameters for rf plasmas at low
pressures for a range of applied voltages and area ratios.

93




3.4 Conclusion

Analytic models of the sheath and bulk are presented here for sphencal

| geometnes Both models consider the time-averaged potential and density d1str1but1ons

and hence are only able to predict events on the ion time scale. The sheath model
considers the effect of a finite electron density in the sheath on the total space charge and
uses this to derive a sheath law which relates the ion current, sheath width and average
potential in asymmetric geometry. Calculations of the ion current using this law are
found to compare well to simulation results.

The bulk calculations determine the average potential profile across the plasma,
using a kinetic approach, similar to that of Langmuir and Tonks (1929). The model also
determines analytic equations for plasma density profiles, ion current and electron |
temperature. These derivations show reasonable to very good agreement with simulation
results. The model is limited to low pressures by the assumption of a constant electron
temperature in the plasma, although by modifying this assumption, so that two different
temperatures can be used in the positive and negative regions of the plasma, the range of
application can be extended.

An analytic derivation of the sheath capacitance is used to determine the ratio of
the amplitude of the sheath voltages. Analytic derivations and scaling laws derived from
simulation results are used to find the total number of plasma particles produced for a
given applied 1f voltage and power, which can be used to determine the peak density in
the plasma. These expressions are used together with the bulk and sheath equations to
create a global model of the entire plasma, in which predictions of plasma parameters
such as sheath widths, currents, potential and density distributions, average electron
energy etc, can be made when the system geometry, gas pressure and applied source
voltage and power is known.

In summary, the model provides some simple analytic expressions which
produce results that agree well with the simulation data, provided the limitations of the
model are recognised.
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Chapter 4

Simulation results in
Hydrogen

Parallel plate reactors are often used for reactive ion etching (RIE) processes. The
reactor is used to produce a plasma of a molecular gas, such as SFg or CHy, depending
~on the material to be etched. The gas is dissociated in the plasma to provide reactive
neutral species (e.g., F or H) which can chemically react with the substrate to perform the
etching, and also provides a source of energetic ions to drive the etching process (the role
of the ions is discussed in Section 4.6). RIE is used as part of the production technique
for many different micro-technologies, just a few examples include production of trench
capacitors; planar, buried or ridge semi-conductor lasers and optical splitters. As
microelectronic technologies become increasingly sophisticated more device components
are included per circuit, which necessitates making each device smaller and packing them
closer together. This requires extremely good control of parameters such as uniformity of
the plasma density across the whole wafer; the energy and angular distributions of ions at
the substrate surface; and ion and neutral fluxes. To accomplish this it is critical to have a
good understanding of the plasma response to a wide range of running conditions.
Recent work suggests that the ion energy distribution at the substrate is critical in
determining etching rates in RIE processing of SiO7 (Perry (1994)) and also influences
film properties in deposition processes (Ichiki, Momose and Yoshida (1994)). Fast
etching rates are important for economical production of wafers since faster etching gives
a faster turn-around on processing time. However conditions which produce fast etching
are also conducive to substrate damage and so a balance must be maintained between
etching rates and damage. Average plasma potentials determine the average energy of
ions at the substrate, but if effects can lead to ions arriving with much larger or smaller
energies. Hence it is extremely important to determine the jon energy distribution function
(IEDF) at the powered electrode surface, where the substrate is normally placed.

- Unfortunately this is a difficult experiment to perform, due to the large, time-dependent

voltages on the electrode. Simulations are an ideal method of determining the dependence
of parameters, such as the ion EDF on a variety of externally determined variables,
including the applied voltage, area ratio, source frequency, and background gas pressure.
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