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Chapter 5

leferentlal Cross sections
for Ar—Ar+

Laser-induced fluorescence measurements in low pressure ECR reactors
(Sadeghi et al (1991), den Hartog et al (1990)) have found that argon ion temperatures
perpendicular to the applied electric field can be 10 times greater than that of the neutral
gas temperature'within the bulk. Hence ion collisions with the background gas atoms
must be involved in transferring energy obtained by the ions through acceleration in the
field, to directions perpendicular to the field. However, experimental measurements
(Vestal et al (1978)) show that for ion energies greater than ~1 eV the differential cross-
section for ion collisions with atoms is highly anisotropic — having scattering angles
close to 0° or 180° in the centre-of-mass frame — which should result in negligible
perpendicular heating. This seems to indicate that there is some feature in the cross-
sections, at least for low energies, which has a large effect on the ion trajectories but is
not well understood.

In manufacturing of micro- electromc devices it is desirable to have control of the
angular distribution of the ions at the surface to ensure vertical etching of the substrate.
It is therefore necessary to have a detailed understanding of how the ion trajectories are
effected by collisions, both within the bulk and in the sheath, and their consequential
effect on the angular distribution at the substrate. To understand therefore how ion-
neutral collisions modify the ion velocity distribution, the effect of finite scattering
angles is investigated by developing a highly accurate model of these collisions. The
interaction potentials for Ar-Art were represented by using a Morse curve fit, and

classical techniques used to determine the scattering angle as a function of energy and

impact parameter. The details of the derivation are presented in Section 5.1. In Section
5.2 the collision model was used in a one-dimensional Monte Carlo code to determine
the differential cross-sections, which were compared to the experimental measurements
given in Vestal et al . This code simulates argon ions travelling through a background
of neutral argon gas allowing determination of the energy division between the parallel
and perpendicular directions. Simulation results for drift velocities of ions in constant
fields and pressures are compared to theoretical and experimental results in Section 5.3.
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5.1 Theory

~5.1.1  Fitting the interaction potential

The post-collision trajectories of two colliding particles are determined by their
interaction potential. By fitting a curve to the potential, it can be usedin a classical
calculation to determine the scatteﬁhg angle of the particles in the centre-of-mass frame.
In order to accurately determine the ion scattering as a function of the particle energy

* and the impact parameter it is important to correctly reproduce the width, c, depth, &, .

and position of the potential minimum, 7,,,.

The potential was fitted using a Morse curve, which consists of two
exponentials fitted with results from spectroscopic measurements. This method of
representing the interaction potential was originally developed by P.M. Morse in 1929
(Varshni (1957)) for spectroscopic work and accurately models the short range
repulsive forces and the potential well, which is important in determining the large
scattering angle component of the cross-section. The curve is fitted with theoretical
parameters obtained from Lorents et al (1973). |
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Figure 5.1 The interaction potential for argon, represented using the Morse form
given in equation (5.1). '
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V(r) = gl —2g), (5.1)
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wherex =1-

5.1.2

w

ry = the position of the potential well = 2.438 A
¢ =welldepth=1.25eV
¢ = parameter controlling well width = 1.623x 10" !

Calculating the Scattering Angle

Once the potential has been determined the scattering angle can be calculated

classically using conservation of energy and momentum. In order to simplify the

calculations the two-body scattering problem is reduced to a single reduced mass

“virtual” particle scattering about a stationary centre by converting to the centre-of-mass

reference frame. This single-body scattering problem is represented schematically in

Figure 5.2.

Figure 5.2
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Diagram of a reduced mass particle scattering about a point in the centre-
of-mass frame. M, is the reduced particle mass, v, is its initial velocity,
and @(r) the instantaneous angle between the particle and the scattering
centre; b is the impact parameter, 8 is the scattering angle, 7 the
distance of closest approach and ¢ the angle at this distance.
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In the centre-of-mass frame ¢ , the angle the virtual particle makes with the
scattering centre at the distance of closest approach, is given by

A Tmin

oo , o (5.2)

where () = instantaneous angle of virtual particle with scattering centre. From
conservation of energy and momentum the rate of change of ¢ with particle

- separation, 7, can be obtained from

ol

do

ar \/lm(e)
£, r

where €, = relative centre-of-mass energy of the particle = % U2, M, is the mass of

, (5.3)

M
the virtual particle = 2Ar , u,is the initial velocity of the particle and b is the impact

parameter. Substituting (5.3) into (5.2)

Tmin

2
A1-e )
g, r

0 . (5.4)

Nl

0(&,:0) = -

From symmetry in the centre-of-mass frame, 8 = 7 — 2¢ , and so the scattering angle,
6, is given by

‘:ngu

dr

O(,b)=m -2
‘ 1-@;(2’)

Aeo r

T min . (55)

Note that when b = 0 the ion is reflected, since the scattering angle 6(¢,, b) = .
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e

The distance of closest approach, 7yin, 18 determined from the largest real root

of the equation

(5.6)

If 71in 18 real and non-zero then (5.5) is integrable.

n
The distance of closest approach, Tmin, 18 shown in Figure 5.3 for energies of
be divided into two

0.001, 0.2, 1.0, 10.0, and 500.0 eV. The behaviour of rpin Can
different regions. At large impact parameters the potential V=0 for all energies, SO
= b. For impact parameters in the range 3 - 9 A, which
corresponds to the region of the potential well, the behaviour of 7min 18 highly
‘dependent on the energy, €. At very small impact parameters the distance of closest
approach will be equal to the distance, 7, corresponding to the maximum potential

from equation (5.6) Tmin

3.0%x10°

2.0x107 9}

Increasing energy

Distance of Closést Approach

0 1.0x1072 2.0x10" 2 3.0x10”
Impact parameter (m)

Figure 5.3 Distance of closest approach, 7, as @ function of impact parameter for

energies 0.001 eV (solid line), 0.2 eV (dotted), 1.0 eV (dashed),

10.0 eV (dash-dot) , 500.0 eV (dash-three dots).
with small energies can be trapped by the

barrier, V(r) = &, that the ion can climb. Ions
=2 A (the

well at large impact parameters, and will therefore attain values of rmin
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e reflected from the potential barri

hich the potential becomes"positive) before being scattered. Ions with

of 1.25 eV will be less effected by the well and will
The position

distance at W

energies larger than the well depth
er at much smaller impact parameters.

of the discontinuity in ely proportional to the ion energy.

Some modification to the scattering angle calculation is introduced at this point
s awkward at impact parameters approaching

finite at this point. In order to remove the

Fymin is therefore invers

as numerically integrating equation (5.5) 1
since the integrand (5.6) becomes in

Vinin>
singularity at 7yin and make the region of integration finite a change of variables is
introduced
cosx = &, (5.7)
r
Equation (5.5) can then be re-written as
e T2
- odx
0(e,b)=T—2 et
(o) f 1+ F(x)
o ‘ (5.8)

2

where F(x)=
) b*sin’* x

For equation (5.8) to be integrable at Ty, » F(X ) needs to be finite as x —> 0.

To test whether this is true first consider the behaviour of Vasx — 0. At small values

of x

r, 2
min X
= Ymin 14

cosXx 27, - (5.9)
and therefore the potential at small x can be approximated using
g A%
V() = V(r, +"—r.(——) : 5.10
(COSX) ( mm) 2 min ar e ( )
Atx=0r7r=rmin and so equation (5.6) can be re-written as
yo2pp g2 Ym) 2o, (5.11)

e €

(/]
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Substituting (5.10) and (5.11) into the equation for ¥ yields the result that for small x

2 3
Toin ( 3") 1)

. potential is finite at the distance of clo

X
) sin® x 2e,b°\ 9r J,,

. sin?
Since: 1x2x — las f the

x — 0, F(x) will be finite provided that the gradient 0
sest apprdach, which will be true for all impact

larger than the repulsive core of the potential.

parameters which are
mplicit, which should reduce

Finally (5.8) is re-arranged to make the difference i

the incidence of numerical errors for small values of 6

wfa

dx

0(c,,b)=2| dr WrER
X

NE

F(x) dx
1+ F)+V 1+ F®)

(5.13)

0

cattering angle as a function of

54(a)isa three-dimensional plbt of the .s
s most of the surface is flat and

Figure
energy and impact parameter. At large impact parameter
has a value close to zero: this clearly shows that for most parameters the scattering
angle is very small and so the scattering will be highly anisotropic. This corroborates
tal et al . However, there is a distinctive region at

" the experimental measurements of Ves
fairly small impact parameters where the scattering angle can reach large negative
reaching a value of 7 at b=0. This

numbers, after which it slowly becomes positive,
es plotted in Figure

be more clearly seen by looking at the individual energi

structure can
5.4 (b). This clearly shows that there is a small range of impact parameters for which
ly large — these are the same

the scattering angle quite suddenly becomes extreme
the distance of closest

arameter fbr which the discontinuity in
approach graph occurs (in Figure 5.3). Note that this feature depends on energy as well

as impact parameter — the position of the peak (negative) angle occurs at decreasing
In other words, the ion and the neutral have

regions of impact p

impact parameters for increasing energies.
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Figure 5.4 (a) Three dimensional plot of scattering angle as a
function of impact parameter and centre—of—mass

ion energy

(b) Scattering angle vs impact parameter for ion energies:

0.001eV (solid line), 0.2eV (dotted), 1.0eV (dashed),
10.0eV (dash-dot), 500.0eV (dash—three dots)




to approach more closely at large energies in order to scatter at large angles. The feature
is very distinctive at low energies 0.001 —1.0eV (although the absolute magnitude has
a large degree of scatter over this range) but decreases with energy, s0 that at 500 eV it

has entirely disappeared. At very small impact parameters, the scattering angle becomes ==
positive, increasing to a maximum scattering angle of 7 at b = 0. This sinusoidal
scattering dependence is typical of hard-sphere collisions and represents scattering from
the hard core of the potential.

Since the scattering angle is determined using classical considerations, an
intuitive picture of the event can be built up by considering the interaction potential as a
two dimensional surface along which the ion travels. This is represented schematically
in Figure 5.5, with scattering shown for three different impact parameters. In case (a),
where b is much larger than the radius of the potential well, the particle trajectory is
relatively undisturbed, and the scattering angle is essentially 0. For case (b) where the
impact parameter is of the order of the well radius, ryell, the particle enters the well and
spirals toward the centre — the ion and neutral are trapped into orbiting one another as a
"pseudo particle" before scattering, and a large scattering angle results. As b decreases
the time spent in the well decreases and so does the scattering angle. Case (c) occurs

Figure 5.5 Schematic of an ion scattering in a 2D interaction potential, showing
scattering behaviour for three different ranges of the impact parameter,
b. (a) when b >> ryeil, the radius of the potential well, the scattering
angle, 0, is very small. (b) when b =ry.ji, orbiting occurs and O is
very large, (c) when b =rcore, the repulsive core of the potential,

isotropic scattering occurs and 0 o< 2cos1b.

- 158




when b approaches r¢ore, the radius of the repulsive core potential. The interaction -
between ion and neutral is then similar to hard-sphere scattering and the scattering angle
has a cosine dependence on b (cos 6/2 o< b) so that as b — 0 the scattering angle

approaches T.
This particular picture is only valid for relatively low energy ions - say for the

0.001 - 1.0 eV range. As the ion energy increases the effect of the well potential has
Jess and less effect on case (b) ions, since the impact parameter at which orbiting occurs
decreases with increasing energy and so the likelihood of particle trapping also
decreases. Therefore as the ion energy increases the position of the peak in the
scattering angle becomes smaller; so that at very high energies ions experience only
scattering corresponding to cases (a) and (c). This picture of the scattering explains the
effects noted in Figure 5.4, and as well explains the dramatic drop in distance of closest
approach at impact parameters corresponding to the well position (Figure 5.3). The
sign of the scattering angle is determined by the form of equation (5.5) — the scattering
angle is negative when the integral on the right hand side is > 71/2, and positive when it
is < /2.

The unexpectedly large scattering angles for case (b) ions are known collectively
as the rainbow angle, in analogy to critical angle scattering of light (see also Section
5.1.3). The impact parameter at which the rainbow angle occurs is inversely
proportional to the ion energy, since higher energy ions need to be closer to the well
minimum to be trapped, and very high energy ions will not be trapped at all. Hence the
magnitude of the rainbow angle is proportional to the ratio of the ion energy and the

maximum well depth.

5.1.3  Singularities in the scattering angle

There are several forms of singularity in the scattering angle, due to the form of
the interaction potential, which have important physical effects on the scattering.

Orbiting

It is possible for the scattering angle, 0, to be greater than 7t, which means that
the particle makes more than one revolution around the scattering centre. This
phenomenon is known as orbiting. The conditions for this to take place can be
determined by rewriting the numerator of (5.5) in terms of the classical angular
momentum J = M,v,b. An effective potential, Vg, for the relative radial motion can

then be written as
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Veff ) =V(r) + 2]"2 rz
r’ o, (5.14)

‘where V(r) is the true interaction potential, J is the angular

momentum, My is the

reduced mass and r is the radial distance. The radial velocity can therefore be

determined from

lyr 2_ ¢ .
My, = g,-Veff () (5.15)

is the initial energy of the particle. If the radial velocity is small in the vicinity

(d—%ﬁ)r:rmi: 0at Foin » then

where &,

of the potential well minimum, and in particular if

orbiting will occur.

Rainbow scattering

“There is a singularity in the scattering angle whic
attractive minima, known as the rainbow effect, in analogy with the formation of
s by scattering of light at a critical angle. According to Mason and McDaniel

h occurs for potentials with

rainbow
((1988), pg 151) this effect occurs at impact parameters for which the slope%g =0,

since the differential cross-section, 0, becomes infinite at this point:

b db ’
o(b,0)=\———x 5.16
,9) \sin@d@ ( )

Effectively the scattering probability is large at this angle, but not infinite, since
ter and in

in the simulation the resolution is limited to the bin size for the impact parame

the “real world” the interaction potential is blurred by the effects of neighbouring

particles.
Physically this corresponds to a range of energies and impact parameters which

cause the particles to orbit each other as a pseudo-molecule before scattering. The
magnitude of the rainbow angle varies inversely with the energy (see Section 5.3.1), s0
ions with energies of the order of a few eV will typically scatter at much larger angles .
than expected for small-angle elastic scattering. Since the rainbow angle has a large
cross-section, and hence a large probability, it plays a major role in determining the

transfer of energy into the perpendicular direction.
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Glory scattering
This singularity occurs when the scattering angle 6 — nt, where n is an

integer. Zero and even values of n represent forward scattering, odd values of n

backward scattering. This effect is difficult to detect experimentally, since ions scattered- - -

in the forward direction are impossible to distinguish from the beam of unscattered
ions, and ions scattered in the backward direction do not reach the detector.
The effect of these three singularities is shown schematically in Figure 5.6.

Figure 5.6 (a) shows a general form the scattering angle as a function of impact
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- Figure 5. 6 (a) The scattering angle as a function of the impact parameter for a
given energy, showing the regions of impact parameters corresponding
to glory and rainbow scattering (b) Scattering probability for the same
energy, with the contribution from each region. The total probablhty,

shown as a thick line, is the sum of I, II and III.
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parameter at a given ion energy (c.f. simulation results in Figure 5.4 (b)). The
scattering angle is divided into three regions which are bounded by impact parameters
which correspond to glory scattering (6= 0° or 180°) and rainbow scattering (6=

Orain). Figure 5.6 (b) presents the total scattering ] probability as afunctionof scatteﬂngﬂ e i

angle, which is determined from the likelihood of scattering at a particular angle for
each region, assuming that all values of b is equally likely. For example, in region III
the scattering angle varies from very small at b — oo, t0 Grqin at b = bygin, and since
there is much larger proportion of small scattering angles (over the impact parameter
range) the probability curve peaks as 8 — 0. There is also a small local peak at
0 =0,4in, since the curve 6 (b) flattens out as b — bygin and hence a relatively larger
proport1on of ions will be scattered at this angle. |
These calculations determine 0 for elastic scattering only. For collisions at
small separations there is a high likelihood of charge exchange taking place — this is the
phenomenon in which the neutral and the ion swap an electron during the collision (in
fact the electron may be transferred several times, depending on the duration of the
event). This results in a hot neutral atom and a thermal ion, and hence charge exchange
has the effect of cooling ions accelerated in the sheath. In order to include charge
exchange in the model, the charge exchange probability must be determined as a

function of energy and impact parameter.

5.1.4  Charge Exchange

In a charge exchange collision an electron swaps from the neutral over to the
jon. This makes a scattering angle of 8 look like scattering at 7t -6, since the ion and the
neutral have interchanged during the collision. Charge exchange is intrinsically a
quantum effect and it cannot be obtained from the classical elastic scattering calculation,
so it must be included empirically into the model using expetimental values of the total
charge exchange cross-section (the cross-sections are given in Appendix A). Each
collision is then tested to determine whether charge exchange takes place and if the
criteria are fulfilled then the scattering angle, 6, is swapped to 7 -6.

At a given energy, the probability of the collision involving a charge exchange
interaction varies sinusoidally with impact parameter between 0 and 1, due to orbital
resonances. At a critical impact parameter, which is dependent on energy, the |
probability decreases exponentially to zero (Rapp and Francis (1962)). This is shown
schematically in Figure 5.7. For the purposes of the simulation, the charge exchange
probability can be taken as % for b < a and as an exponential for b > a; with the

maximum b for which a charge-exchange collision can occur chosen to be an arbitrary
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Figure 5.7 Variation of charge exchange probability with the impact parameter

limit, bepy_gimie - The function used to model this charge exchange probability is given

by (Porteous (1993))

b . sinh(®/a)( 6 517
%~ 2bla \ 5+ cosh(b/a) '

where b is the impact parameter, and a is the value at which the function starts to turn
over. This function was chosen since it is flat at low impact parameters, decays as eb/a
for b > a and is integrable. The turn-over point, g, is found using the total charge

exchange cross-section, using

®  sinh(b/a)
o (5+cosh(b/a))’

Qe = ZnI P, bdb =36an db = 6ma’ (5.18)
0

where Q,, is the total charge exchange cross-section as a function of energy. An
equation has been determined for Q,, , using the expression (Mason and McDaniel

(1988) pg 344)
Q. =a—-ae (5.19)

~ where a; and ay are constants which depend on the gas type, and ¢ is the ion energy in

eV. Fitting to experimentally measured cross-sections from Rapp and Francis (1962)

gives values of a; = 7.0 and a3 = 0.38.
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The charge-exchange limit, bz, jimir is chosen to be 6a, which effectively
means that collisions with probabilities of < 1% are ignored. As this is an empirical,
rather than a quantum mechanical description of charge exchange, the cross-sections

“derived using this method will not exhibit the peak structure-due to-orbital resonances
~ which is typically associated with charge exchange, but they will have the correct shape

and the right order of magnitude.

5.1.5 Impact parameters

In determining the scattering angle using equation (5.13) it is neither practical,
nor possible, to integrate out to infinite impact parameters although the interaction
potential has no limits in theory. Hence practical limits on b must be determined in
order to integrate @ numerically. From Figure 5.4 it can be seen that at large impact
parameters the scattering angle decreases very slowly toward 0. It is not necessary to
include the infinitely small scattering angles at very large impact parameters, since these
have almost no effect on the ion trajectory but take the same amount of computer time
as a larger, more effective collision. At each energy, therefore, the impact parameter
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Figure 5.8 Limits onimpact parameter used in the simulation, byin_int_angle
corresponds to the minimum angle of interest and bepx_limit is the

maximum charge-exchange limit
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corresponding to a scattering angle of 1°, byyin_int_angle » WaS chosen as an arbitrary

cut-off for elastic collisions. However all charge exchange collisions (with impact

parameters less than bepy_jimir) are included, since these do have a big effect on the ion

and bch.x_limits

velocity. Thus the limif of b at each energy is taken to-be-the-maximum-of by —ins-an ]

and any event with an impact parameter larger than this is assumed to be
a null collision. The limits are shown in Figure 5.8. It is found that bopy. fimi 1S larger
than bm,-n_,-m_angle for all the impact parameters of interest, and s0 bepx_limit is chosen
to be the maximum impact parameter used in determining the scattering angle.

52  Monte Carlo Code

The code models two parallel plates separated by a distance L, with a spatially
uniform electric field, E, and a constant neutral gas pressure, p. Tons are injected at one
electrode and accelerated in the field, making collisions with the neutral gas as they
travel between the electrodes. The relative probability of an ion travelling at a given
energy scattering at any angle between 0 and 7t is determined statistically from the ion
collisions. Multiplying this "differential probability” by the correct scaling factor will
give the differential cross-section — this scaling factor is difficult to calculate
theoretically so it is determined from the experimental cross-section of Vestal et-al . The
relative forms of the simulation and experimental cross-sections are then compared.
Various other measurements are made using the code, including the ion mobility, the
division of energy between the parallel and perpendicular directions, and the angular |
distribution of the ions at the far electrode. .

Although in general Monte Carlo codes will use distance- or time-of-fligh
techniques for generating ion paths, this simulation uses fixed time-steps which are
much shorter than the mean free time between collisions. Although using fixed time-
steps is a less efficient technique, the cross-section model is intended to be
incorporated into a PIC plasma simulation and so must use methods which are
compatible with the way particles are transported in the PIC code. At the end of each
time-step an impact parameter, which is dependent on the relative energy of the ion, is
chosen and this is used to determine whether the jon makes a collision. If a collision is
found to occur then the energy and impact parameters are used as indices to look up the
scattering angle from a predetermined table, and the new ion trajectory is calculated.
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5.2.1 Choosing an impact parameter

In order to determine an impact parameter for the ion at each time-step a virtual

cylinder is calculated from the ion trajectory. The length of the cylinder is determined
by the distance traversed by the ion, and the radius is chosen so that the cylinder

contains one neutral atom

1

Tmes = T Ln

(5.20)

where n,, is the neutral density, L is the length of the cylinder = u, Az, U is the ion
velocity and At the time-step. Assuming that the neutrals have a spatially uniform
distribution, the position of the neutral can be anywhere within the cylinder. The
cumulative probability of the impact parameter having a certain value b is therefore

IbZTL'Lr dr p?

Pr(b) =2 == a (5.21)

2 2
wLlr,, Voo

Inverting this relationship, and using a random number , R, uniformly distributed
between 0 and 1 to represent Pr(b), an impact parameter can then be chosen by

b=+R r,, . (5.22)
g °
One Neutral Radius Neutral \
T Ion
_max o e e - — - 0O
Vion At

Figure 5.9 Virtual cylinder determined by the motion of the ion over one time-step -
fmax i chosen so the cylinder contains one neutral.
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5.2.2 Centre-of-Mass Frame

Once a collision has occurred, the new ion velocity must be calculated after scattering.

The scattering angle is determined for the centre-of-mass (c-0-m) frame and so the pre-
collision ion velocity must be converted to this coordinate system. The new velocity is
calculated using the scattering angle in the centre-of-mass system, and then is converted
back to the lab frame. This is shown schematically in Figure 5.10, where the dashed
axes represent the c-o-m coordinate frame, v;_com is the ion velocity relative to the c-o-
m reference frame, 0 is the scattering angle, ¢ is the azimuthal scattering, and o and 8
the angles of the c-o-m frame relative to the lab frame.

First a 3-D velocity distribution for the neutral is chosen by random sampling
from a 300 K Maxwellian velocity distribution. The ion and neutral velocities in the lab

frame are then given by

prl un,_x
vion = vprp ? uneut = un_y ’ (523)
0 u, ,

where vp,1 is the parallel ion velocity, vprp is the perpendicular velocity, and u#,_x, Un_y
and uy,_, are the components of the neutral velocity in the direction of the x, y and z
axes respectively. Note that for this calculation the perpendicular ion energy is
converted to velocity and assigned to the y-direction. This is purely for convenience,
since once the new ion velocity is calculated the perpendicular component will be

converted back to energy.
The centre-of-mass velocity is calculated using

7 =l(v t ) - | (5.29)

~

~ ~ 1
vion_com = Vion ~ vcom = 5 prp - un_y (525)

The new x axis x' is determined from the direction of the centre—of—mass’
velocity, since this forms the axis of the collision. The y’ and z' axes are chosen
perpendicular to x' (see Figure 5.10). After scattering around x' by angle 6, the post-
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collision trajectory is rotated by a random angle ¢ , uniformly distributed between 0
and 27, to take into account the random orientation of 0 around the collision axis. The

new velocity in the centre-of-mass frame is

cos @
sin @ cos ¢ (5.26)
sin @ cos ¢ '

“‘,‘/

ion_com

~

=\

ion_com
The new ion velocity must then be converted back to the lab frame coordinate system.
The relation between the centre-of-mass and lab axes is given by

x1.. = cosc cosfB x' - sina cosfy’ - sinf '
lab y

Yigb = sino x' - sinf cos¢ y’

Zyap = COSC cosP x' - sina cosfB y’ - sinf 2’ (5.27)
y X'
Y1 > ' R

Figure 5.10 Diagram of the ion velocity after a collision with scattering angle 0;
wherevion_com is the ion velocity relative to the centre-of-mass frame
frame (which is unchanged by the collision). (Xigb, Ylab Zab) ar€ the
lab coordinate axes, and (x’, y’, z’) the c-0-m coordinate axes, the -

two coordinate systems are related by angles ctand 3.
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where cosa =

~

v

~

’ 2 2

A +v;

ion_com_x ion_com_z ’ sin o = vion_com_y
14 .

fon_.com

fon_com

v L v

ion_com_Xx ion_com._2

cosf = — = , sinff =— =
\/;ion_cam_x +vion_com_z '\/a_com_x +vion_com_z

?

and Vion_com_x ©tc, refer to the X, y and z components of the ion c-o-m velocity.
Converting the post-collision ion velocity back into the lab frame coordinate system

cos O cos o:cos § —sin O cos ¢sin czcos B —sin Osin ¢ sin
cos@sina +sin Ocos pcos o . (5.28)
cos Ocos asin B — sin O cos @sin asin f—sin Osin pcosp

v

ion_com

~r
View =

To return the ion velocity in the lab frame, the centre-of-mass velocity must be added

back to the ion velocity
vion = i.)'l:zbb + vcom ¢ . (5 29)

And finally the velocities in the y and z directions must be combined to give the new
perpendicular ion velocity. v
V2 o=y 42 - (5.30)

prp ion_y ion_z"*

5.3  Comparison with experimental
results

To determine the accuracy of the model, results from the Monte Carlo
simulation have been compared to available experimental results. In Section 5.3.1 the
magnitude of the rainbow angle, and its relation to the well depth in the interaction
potential is discussed. In Section 5.3.2 the differential cross-sections (which are
determined statistically from many scattering events) are scaled to fit the experimental
cross-sections determined by Vestal et al (1989), allowing a comparison between the

- shape of the simulation and experimental cross-sections. Section 5.2.3 determines the

total elastic cross-section as a function of energy and compares this to total experimental
cross-sections. Drift velocities, obtained by running the simulation for many different
conditions of electric field and background gas pressure, are compared to 'expérimental
drift tube data from Ellis et al (1976), and to simple theory developed in Section 5.3.4.
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Finally in Section 5.3.5 results showing the energy division between parallel and
perpendicular directions and the resulting angular distributions at the end electrode are
presented, and the effect of the cross-section shape on the transfer of energy into the

perpendicular direction is discussed.

5.3.1 Rainbow Angle

From theoretical considerations (V estal et al (1978), Lorents et al (1973)) the
product of the rainbow angle and the jon centre-of-mass energy should be a constant.
That is, over a range of energies &.6y4in = C,, Where C, (known as the reduced
rainbow angle) depends on the well depth and is unique for each ion-neutral pair.
Vestal ez al determine the rainbow angle in reduced coordinates to be 130 +2 eV* from
their experimental measurements, and calculate a potential well depth of 1.4 eV.
Lorents ef al determine an experimental value for £.64in Of 115 eV®, and calculate a
theoretical value of 116 eV°, using a well depth of 1.25 eV. Experimental
measurements of the well depth (quoted by Vestal et al ) vary from 1.23 £0.02¢€V to
1.33 £0.02 eV.

A well depth of 1.25 eV was used in the simulation. This gave a reduced
rainbow angle of 127 eV° for most of the energy range from 0.001 eV to 100 eV (see
Figure 5.11), which compares reasonably well to the experimental and theoretical
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Figure 5.11 The product of the rainbow angle and the energy plotted as a function
of energy, giving the relation €.0pgin = 127 eV’
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results obtained by Lorents et al for the same well depth. At high energies the rainbow
angle is less well defined, since it is inversely proportional to energy and at energies
greater than ~100 eV it becomes difficult to differentiate from small angle scattering,

leading to the numerical noise observed.

5.3.2  Differential Probability of Scattering

When the Monte Carlo code is run the scattering angles are stored as a function
of energy for each collision to determine the differential probability of scattering. The
probability is normalised at each energy, so the total probability of scattering, summed
over all angles, is one. The differential probability is plotted as a function of energy and
angle in Figure 5.12 (a), with the plot oriented so that energy decreases from front to
back to clearly show the rainbow angle. At high energies the scattering probability is
very anisotropic — with angles close to 0° and 180° — and clearly shows the symmetry
in the probability for forward (elastic) and backward (charge exchange) scattering. For
a collision at a given energy and impact parameter typically half of the ions willbe
forward scattered (i.e., scattered with angle 6) and half backward scattered (scattered
with angle 7 - 0). There is a break in the symmetry at low energies, as the probability
of backward scattering goes to zero. Low energy ions tend to make glancmg collisions
with large impact parameters, which are very unlikely to involve charge-exchange. This
can be clearly seen in Figure 5.12 (b) for energy 0.01 eV there is a peak at small
scattering angles but no corresponding peak close to 7.

For intermediate energies — between about 0.5 and 10.0 eV — the rainbow angle
is clearly visible as a sharp drop in the scattering probability. In Figure 5.12 (b), for
energies 2 and 5 eV, it can be seen that the rainbow angle is actually a local peak. At
this range of energies the probability of scattering at angles less than or equal to the
rainbow angle is relatively large, with a local maximum at the rainbow angle. For
angles greater than the rainbow angle the scattering probability is extremely small. Ions
in this intermediate energy range can scatter at larger angles than is conventionally
expected for forward scattering collisions, due to the effect of the rainbow angle. The
rainbow angle becomes smaller with increasing ion energy, so the peak in the
probability becomes indistinguishable from the small angle scattering peak at ion
energies greater than 10 eV, and the scattering becomes strongly forward-peaked as is

conventionally assumed.
The existence of the rainbow angle therefore means that ions in the energy

range 0.5 - 10 eV have a greatly increased probability of scattering at angles larger than

a few degrees, which can result in enhanced transfer of energy into the perpendicular
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direction. To determine the effect on the angular distribution at the electrodes consider
an ion traversing the sheath of a low pressure 1f plasma. Ions will tend to have at least
one charge exchange collision in the sheath, since the average mean free path for charge

exchange at a pressure of 20 mTorr is of the order of a féw millimetres, while the
maximum sheath width is typically 3 cm . After a charge exchange collision the ion
energy will be low, and so there is an increased probability that the ion will make a
second elastic collision with a large scattering angle. Ions which make multiple
collisions in the sheath can therefore impact the electrode with substantially non-
perpendicular trajectories.

Results of the differential probability of scattering are compared to the
measurements of Vestal ez al (1989) at discrete energies in Figure 5.13. Cross-sections
derived from the simulation were all multiplied by a single scaling factor in order to
compare to experimental results, since only relative values of the differential cross-
section can be obtained. As can be seen the qualitative agreement between simulation
and experimental results is very good, especially for the higher energies. The
experimental measurements do not show the rainbow angle as clearly as the simulation,
possibly because the measurements are limited by the experimental accuracy of the
apparatus. In the experimental system also quantum interactions between the electron
shells of the colliding ion and neutral lead to the ripples observed in the cross-section,
which blur the shape of the cross-section. Quantum effects are not included in the
simulation (Section 5.1.5) so the ripples are absent from the numerical cross-sections.

5.3.4 Total Elastic Cross-section

Assuming that most elastic collisions have scattering angles in the range 0 to
/2, integrating the differential cross-section from Gy, to 7t/2 will give the total elastic

cross-section as a function of energy

9 elal ) = fzo(e, €) sin(0) d0
Bnin : (5.31)

Integrating from 7/2 to 7 just returns the fitted total charge exchange cross-section.

In order to determine the total elastic cross-section from the simulation it was
found to be easier to substitute for the differential cross-section using o'sin 8 d6 = bdb
from (5.16), since, as mentioned in the previous section, only relative values of the
differential cross-sections are known. Equation 5.31 therefore becomes
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qelas(g) = J.;;db
0 (5.32)

1 ..
=s- Ld(nb. ) (j0B) 2 6,,)

However, limits for the integral in (5.32)) are not simple to calculate, since if
conditions for a rainbow angle exist at a specified energy, then the scattering angle at
this energy can be less than Gy, at three separate impact parameters due to the form of
the dependence of 0 on b. This is shown schematically in Figure 5.14. Instead it is

easier to re-write (5.32) in terms of the impact parameter limits.

4 (€)= i“?i(nbzﬁ '[ Z(nbz)] | |
27| Jo @ (5.33)
1
= '2';(‘11 -t aa)

In general aj and a3 are very close in value for most energies, even when the
rainbow angle is present, and so a reasonable approximation is to simply use a3 to
determine the total cross-section. The total elastic cross-section calculated using
equation (5.32) is plotted in Figure 5.15, together with the cross-section obtained by
fitting to experimental values (see Appendix A) and discrete values obtained by
integrating over the differential cross-section from Vestal et al . The first thing to note is

Scattering Angle

A

Figure 5.14 Schematic of scattering angle as a function of the impact "area", b2,

showing the intercepts a;, a2 and a3 at which |6} < Opin
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the discontinuity in both the calculated cross-sections at an energy which is found to
depend on the value used for ;s Looking at Figure 5.8 it can be seen there is a
sudden drop in bmin_int_ang at the same energy. This is due to the inverse

- proportionality of the rainbow angle to energy = at acritical energy the rainbow-angle

becomes less than 6,,;, and since the highest probability of scattering is for angles less
than O,y this causes a noticeable drop in the integrated cross-section. The energy of

the discontinuity can be determined from

E erainbow _ 127eV°
o . 7]

min min

Edisc =

From Figure 5.15 the discontinuity occurs at a value of ~ 120 eV, which
corresponds well to the minimum angle of 1° used in the simulation. The expenmental
cross-section does not have the same discontinuity, since experimental conditions
generally limit measurements to scattering angles of 20° - 80°, and so the small angle
peak is not actually included for any of the cross-section measurements. Hence it would
be expected that for energies greater than &4, the numerical cross-sectlon should be
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Figure 5.15 Total elastic scattering cross-section plotted as a function of energy, for
the experimental fit (solid line with crosses), simulation (dashed line),
and the integrated differential cross-sections in Vestal (asterisks)
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equal to the experimental measurements, as neither include small angle scattering.
Instead there is a factor of 5 difference between the results. Possibly this is due to
errors in determining the absolute values of the experimental total cross-sections —

differénces of factors of 2 have been found between different experimental charge |

exchange cross-section measurements (Appendix A). The integrated differential cross-
sections from Vestal et al , also plotted in Figure 5.15, have a very steep gradient at low
energies, so although results at 5.6 eV and 10.2 eV agree well with the simulation
cross-section, the value for 1.35 €V is almost an order of magnitude larger. This is
possibly due to extrapolation of the results to zero degrees in order to integrate them.

5.3.5 Comparison of simulation drift velocities with
theoretical and experimental values

The Monte Carlo code, having constant electric field and pressure, is essentially
a model of a drift tube experiment. Drift velocity experiments have been performed
since the early 1960’s to study the behaviour of slow ions in gases and thus determine
quantities such as the reaction rate coefficients and charge-exchange cross-sections
(McDaniel 1988); and so there is a large body of experimental and theoretical results
available for comparison to the simulation results. '

The drift velocity of ions in a background gas of the same type is proportional to
the ratio of electric field over pressure — as the field is increased ions can gain more
energy in one mean free path, while increasing the pressure decreases the average
distance between collisions. The parallel ion energy is primarily dependent on the
charge exchange cross-section, as every charge exchange collision essentially drops the
jon energy to zero, and is relatively insensitive to the elastic scattering cross-section,
since scattering angles are small for ion energies greater than a few eV.

A simple theoretical model, derived in collaboration with Dr R. K. Porteous, is
used to determine an analytic relationship between E/p and the drift velocity. The
derivation assumes that the drift velocity is essentially determined by the mean free path
for charge exchange and that elastic collisions have little effect. The mean free path
between collisions can therefore be assumed to be constant for most conditions, as the
charge-exchange cross-section is relatively invariant over the energy range 1-1000 eV
(Mason and McDaniel (1988), pg 147). The derivation considers the temporal and
spatial evolution of the ion energy distribution, considering the competing effects of
collisions and acceleration in the electric field. At an initial position and time the ions are
assumed to have an energy distribution F(K), where K =1/2 mv*. At a later time and

position the distribution will have evolved to the form F(K’), where the change in’
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average energy of the distribution, due to acceleration in the field, is given by AK =
eEAx. Since the mean free path, A, is defined to be constant for each set of field
conditions, the characteristic energy of the ions can be defined as K, = eEA . Particles

which have collisions drop out of the disttibution, so at the later time the distribution

will have the form

-AK

FK)=F(K)e ’I'F(K) eeE“F(K)eK . (5.34)

AsAK -0

F K" =F(K+AK) = F(K) + éliAK
oK

(5.35)

Equations (5.34) and (5.35) éuggest that the energy distribution must be of the form

-K

F(K)=F(0)e*. (5.36)

The energy distribution can be converted to a velocity distribution using
f(v)dv = F(K)dK/mv, where m is the mass of the ion, and v is the velocity. The drift

velocity is then obtained by integrating over the entire distribution

dK
J. vf(v)dv J:) F(K)—

Varig = J. f (v)dv J‘ \/ﬁ F( K) aint

Substituting for F(K) in (5.37)and setting x =~ gives
4]

drift = I\/;e

(5.37)

mT, (5.38)

The average drift energy of the ions, &g, is then given by |

1 2 K, eEA
Ed =§mvd,,-ﬁ= _— = i :
n T (5.39)
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Re-arranging (5.39) and substituting A = , Where n,, is the neutral density

n Qexch

~and Qgxch is the charge exchange cross-section, gives the equation

E =G
; = Ed Qexch (Ed)

(5.40)

where p is the pressure, and G is Loschmidt’s number = 3.2x1022 m-3Torr ! (used to
convert the pressure, in Torr, at 300K to the atomic number density). This has the same
general form for E/p as given in Mason and McDaniel (1988, pg 149), but with an |
additional multiplying factor of 7t/+/2 . Mason and McDaniel derive their equation
using kinetic techniques, assuming that ions make hard sphere collisions.

At Jow field conditions, vgrif, the drift velocity of the ions approaches the
average thermal velocity of the neutrals, and so the random component introduced to
the drift velocity through collisions with the neutrals becomes important to the
distribution . A generalised form for the average ion energy, &,y, must therefore include

" both the directed drift energy (due to the field) and the average neutral temperature, i.e.,

& = €4 + kT, . Equation (5.40) must then be re-written as
E nG
e N €4€0 Qexch( 8d€av) (541)

This equation includes the randomising effect of the neutrals at small drift
energies, and reduces to (5.40) for high energies. If kT, is constant for all conditions
and the charge-exchange cross-section is only slowly varying with energy, then at high

field conditions E/p will be proportional to the drift energy, and at low E/p to the

square-root of the drift energy. The change in gradient is due to the importance of the
neutral temperature at very low fields, since for these conditions the thermal velocity of
the neutrals will be of the same order as the drift velocity.

The simulation results are plotted in Figure 5.16, together with experimental
results of argon drift velocities determined from drift tube experiments by Ellis ez al
(1976), and calculations from the theory derived above, and quite outstanding
agreement is found between the results from all three methods. The change in gradient
in going from high field/low pressure conditions to low field/high pressure conditions '

- can be seen very clearly. The solid lines are empirical fits to the theoretical results at

low and high values of E/p, which show that vyif o E/p for E/p < 10 and vgrif o
(E/p)0-6 for E/p > 10. These relationships match well to the predictions given above,
and agree with theoretical work by Mason and McDaniel (1988).
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Figure 5.16 Drift velocity of argon as a function of E/p (in V mr-! mTorr 1),
showing experimental results (from Ellis ez al 1976); numerical results
from the simulation; and calculations from (5.42). Two fittings are
shown for low and high values of E/p.

5.3.6 Average energy

As ions traverse the length of the drift tube they are accelerated by the electric
field, and decelerated by collisions. When the energy as a function of position is
determined for many ions (to obtain good statistics 106 or more ions are used in the
Monte Carlo simulation) it is found that the average energy in both the parallel and
perpendicular directions rapidly reaches a steady-state value within a few mean free-
path lengths from the anode. The magnitude of this steady state value is determined by
the ratio of electric field to gas pressure E/p, since the period of acceleration in the field
is restricted to the mean free time between charge-exchange collisions, after which the
jons lose most of the energy they have gained. The average total ion energy is therefore
determined by the magnitude of the charge exchange cross-section.

In an elastic scattering event only a small fraction of the ion energy is lost
through momentum transfer to the neutral, the rest is partitioned between the parallel
and perpendicular ion energies, according to the angle of scattering. The relative
proportions of energy in the parallel and perpendicular directions is therefore largely
determined by the elastic cross-section. For most energies the scattering angles are
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small and so most of the energy is stored in the parallel direction, however at very small

values of E/p this can reverse.
* From Figure 5.17 (a) the product of mean free path and pressure for both

" charge exchange and the total mean free path (which includes both charge exchangeand
~ elastic scattering) are plotted. At high E/p both exhibit the same power-law dependency

on E/p, since for large ion energies the probability of charge exchange and elastic
scattering collisions are approximately equal. Experimental measurements of the total
energy also show this (Appendix A). At low E/p the mean free path for charge
exchange decreases more rapidly since low energy ions are less likely to make charge
exchange collisions. |

In Figure 5.17(b) the steady-state values for parallel and perpendicular energies
are plotted as a function of E/p. Both energies are found to have a power law
dependence on E/p for values greater than the thermal energy. The parallel energy is
found to be proportional to (E/p)1-2. Hence the average parallel velocity is proportional
to (E/p)0-6 — the same dependence found for the drift velocity for E/p > 10 (see Figure
5.16) — since at high field conditions the drift velocity is large and primarily in the
parallel direction. The power law dependence of the energies is lost for small E/p, since
the ion energy is no longer independent of the neutral temperature. Instead, at very low
values of E/p, the parallel energy is equal to the neutral thermal energy in one
dimension, %an =0.025 eV. The perpendicular energy is twice this value, since it

includes the two perpendicular directions. Hence at low E/p the ion energy distribution
becomes isotropic. _

In Figure 5.17 (c) the ratio of parallel to perpendlcular energy of the ions is
plotted as a function of E/p. For most of the range the ratio of the energies is almost
constant and can be fitted with the relation Ep,y/Epyp o (E/p)0-, although Epri/Eprp
appears to saturate at high and low field values. At low field values saturation occurs
because the ion energy distribution is determined by the neutral temperature and
becomes isotropic, but the reason for high field saturation is not well understood. It
looks to be due to a relative increase in the perpendicular energy at high E/p, which

could possibly be a result of the shape of the differential cross-section at high energies.

Whether this effect is physical or introduced by assumptions in the derivation of the
cross-section is uncertain at this stage.

The ratio of average energy in the parallel and perpendicular directions is
expected to be highly dependent on the shape of the differential cross-section. To test

~ this the interaction potential was altered to determine the effect on the parallel and

perpendicular energy distributions. The average parallel energy was found to be
relatively insensitive to the shape of the interaction potential. This is because for most
E/p alarge proportion of the energy goes into the parallel direction, and so the parallel
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Figure 5.17
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distribution is primarily determined by the rate of charge exchange collisions, which is
relatively independent of small changes in the shape of the potential. The perpendicular
energy, on the other hand, is strongly dependent on the width, depth and position of

“the potential well in the interaction potential, and any change 1inthese parametershad a -

strong effect on the amount of energy transferred into the perpendicular direction.

5.4 Conclusion

This chapter details the development of angle- and energy-dependent cross-
sections for Art-Ar collisions. Classical collision techniques are used to determine
elastic scattering due to the ion-neutral interaction potentials, and charge exchange is
included empirically using fitted curves to experimental measurements of the total
charge exchange cross-section.

The cross-section model was included in a dc Monte Carlo simulation and used
to determine the relative differential cross-sections for comparison with experimental
measurements by Vestal et al (1978); extremely close agreement was found between
the two forms. Other measurements determined from the’MC code, such as the reduced
rainbow angle, the total elastic cross-section and the drift velocity as a function of E/p,
are also compared to experiment, with excellent general agreement between the
experimental results and simulation data. In particular the drift velocity results from the
simulation showed quite remarkable agreement with both experimental measurements
and with theoretical calculations outlined in this chapter.

The ion energy distribution in the parallel and perpendicular directions was also
studied. For most of the range of E/p, the average energy parallel to the field was found
to be dependent on the total charge exchange cross-section, while the average energy in
the perpendicular direction was more a function of the elastic cross-section and heavily
dependent on the form of the interaction potential.
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