
Chapter 3

Theoretical Treatment of Helicon Waves

3.1 Dispersion Relation in a Uniform Cold Plasma

The dispersion relation is found by solving the wave equation, with the assumption that

first-order quantities vary as [106, 71, 81].

(3.1)

where is defined as

(3.2)

and the dielectric tensor is

(3.3)
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(3.4)

(3.5)

For a two component plasma with ions and electrons

(3.6)

(3.7)

(3.8)

where the plasma frequency and cyclotron frequency for ions and electrons are given by

(3.9)

(3.10)

Since the plasma is isotropic, it is possible to define the applied field as

(3.11)
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Defining as the angle between and and assume is in the plane. Now and

can be defined as

(3.12)

(3.13)

Therefore equation 3.1 can be written in matrix form as

(3.14)

If is set by the plasma parameters then it is possible to solve equation 3.14 for a

non-trivial solution for by setting the determinant of the matrix to zero. The solution

is

(3.15)

where

(3.16)

(3.17)

(3.18)
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Equation 3.15 has the general quadratic solution

(3.19)

When there are two real, distinct solutions to equation 3.19. These corre-

spond to the fast and slow waves, and respectively. A plot of fast and slow wave

roots are shown in Figure 3.1.

(3.20)

(3.21)

At low values of , , giving a single solution to equation 3.15 and the slow

and fast wave are said to coalesce [71].

The helicon wave is a fast wave with a high index of refraction ( i.e. ) and

has a frequency greater than the ion cyclotron frequency and much less than the electron

cyclotron frequency ( ). Thus, equation 3.21 can be rewritten to give the

helicon wave dispersion relation.

(3.22)
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Figure 3.1: The fast and slow wave roots for , B =768 Gauss.
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Which can be re-written in terms of the wave number as

(3.23)

3.2 Wavefields

The helicon wave dispersion relation, as well as the wavefield, can also be determined

using Maxwell’s equations and Ohm’s law. Since the frequency range of the helicon

wave is restricted to less than the electron cyclotron frequency and greater than the ion

cyclotron frequency, electron inertia and ion motion may be neglected, simplifying Ohm’s

law. Maxwell’s equations are

(3.24)

(3.25)

and the simplified Ohm’s law is

(3.26)

where is the applied static magnetic field which is defined to be in the direction (i.e.

), and are the magnetic and electric wavefields, is the current density,

and is the plasma density. , and are assumed to vary as , where

is the azimuthal mode number and is the parallel wave number. Substituting equations
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3.24 and 3.26 into equation 3.25 gives

(3.27)

where

(3.28)

(3.29)

The curl of equation 3.27 gives

(3.30)

The component of equation 3.30 in cyclindrical coordinates is

(3.31)

where is the perpendicular wave number and and are related through by

(3.32)

Equations 3.32 and 3.28 combine to give the helicon wave dispersion relation as pre-

viously derived in equation 3.23. By substituting for the electron plasma frequency, equa-

tion 3.23 can be rearranged to relate the density and applied field to the parallel and
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perpendicular wave numbers.

(3.33)

The components of the magnetic wavefields are obtained by solving equation 3.31 for

and substituting this back into equation 3.27 to obtain and .

(3.34)

(3.35)

(3.36)

where is an arbitary amplitude and is the partial differential of the Bessel func-

tion with respect to . Examples of radial magnetic wavefields calculated using equa-

tions 3.34, 3.35, and 3.36 are shown in figure 3.2 for the first radial mode. It has been

shown by Light and Chen [82] that the profiles for the and modes are

similar when calculated using a conducting boundary condition.

The dispersion relation for a conducting wall boundary is easily found by setting

at the boundary. If the wall radius is , then from equation 3.35

(3.37)
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Figure 3.2: Plot of the wavefields for a conducting wall boundary of radius 2.25cm,
f=7MHz, m , B =768 gauss.
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From equation 3.37 the dependence of on can be found, and their values can be

substituted into equation 3.33 to give the dispersion relation.

Solutions for an insulating boundary are not as easily found as the condition enforced

on is now that it be continuous across the plasma boundary. The usual method of

dealing with this is to numerically solve equation 3.33 to satisfy the boundary conditions.

However, the experimental results presented in section 4.6 show that the assumption of

an infinite plane wave, with , holds for Basil conditions. This gives the simplified

dispersion relation

(3.38)

It should be stressed that the theory presented in this section is for a uniform plasma.

Also that the electron inertia is neglected, due to the frequency restriction stated earlier,

which eliminates the possibility of the slow wave propagating.

3.3 Magnetohydrodynamic (MHD) Numerical Model

The results from the Basil experiment are compared to the results of a magnetohydrody-

namic (MHD) numerical model by Kamenski [68]. This model uses the finite element

method to solve Maxwell’s equations for a cold cylindrical plasma inside a perfectly con-

ducting cylinder with a vacuum gap between the the outer conducting boundary and the

plasma. The outer conducting boundary corresponds to the inside of the magnetic field

coils in the experimental setup. Unlike the experiment the antenna can be placed any-

where inside this cylinder, including in the plasma.

The model has features which include non-uniform radial electron density and tem-
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perature profiles, which can be set to the measured plasma conditions. It is not necessary

to consider boundary conditions at the antenna or plasma-vacuum interface as the model

integrates smoothly over this region. Almost any antenna configuration can be employed

and so far Kamenski has investigated double half-turn, loop, double saddle coil,

and helical antennas.

The model uses the dielectric tensor of a cold collisional plasma, implying

(3.39)

This gives the wave equation

(3.40)

The implies differentiation over the radial direction, .
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Collisions (ion-electron, electron-electron, and ion-neutral) are included in the terms

and .

By comparison with the analytic solution for the uniform plasma dispersion relation

the model was shown to describe the fast wave down to below the ion cyclotron frequency.

High order radial modes are limited near their cutoffs by the omission of the electron

mass, limiting perpendicular wave number. It is reported in this thesis that there is an

experimentally observed effect near the lower hybrid resonance. The model does not

explicitly include the lower hybrid wave, however, it is unlikely that the lower hybrid

wave has been excited directly so the results of the model should not be adversely effected

by any subsequent mode conversion.

The model calculates the wavefields, and from these the antenna impedance is calcu-

lated using the “induced emf” method. This is the first time radiation resistance has been

accurately calculated and compared to experimental results for antennas used in helicon

wave plasma production.

For specified density and temperature radial profiles, and antenna current, the code

calculates theoretical radial and axial wavefields, which can be compared with the mea-

sured wavefields. The code also calculates the Poynting flux across the boundary at the
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Figure 3.3: The parameters used by the finite element method code for Basil with a double
saddle coil antenna.
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edge of the plasma and the radiation resistance. Together with the antenna current can be

used to calculate the plasma loading which can be compared to the measured loading.

3.4 Damping

In a perfectly collisionless plasma perturbation of the magnetic field perpendicular to

would result in an electric field parallel to , . This field would be cancelled by the

space charge of the wave, which in the case of the helicon wave is due to the oscillating

electrons. In the collisionless case the average energy transferred to the electrons is zero.

However if the electrons undergo collisions an effective drag on the electron motion along

is produced, which will result in a net and the transfer of energy from the wave to

the electrons, resulting in a damping of the wave. In the following analysis the static field

is assumed to be large enough that perpendicular electron inertia and the finite Larmor

radius of the electrons can be ignored, which is a valid assumption for the high fields in

Basil.

3.4.1 Collisional Damping

By adding a collisional term to Ohm’s law it is possible to derive a collisional damping

length for the generalised collision frequency. This has been presented in a clear fashion

by Chen [34]. Ohm’s law can be written as

(3.41)
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Following the approach in sections 3.2 equation 3.24, 3.25, and 3.41 can be combined to

give

(3.42)

where is defined in equation 3.28.

By factorising equation 3.42 and solving for the quadratic, the general solution can be

found

(3.43)

where,

(3.44)

(3.45)

(3.46)

The root corresponding to the helicon wave is , which can be written in the form of

equation 3.28, with the approximation of small , as

(3.47)

As in Section 3.2,

(3.48)

Thus, for a complex , must also be complex for the boundary conditions to be

65



satisfied.

(3.49)

Defining the ratio, , between the imaginary and real components of as

(3.50)

can then be rewritten as,

(3.51)

where

(3.52)

Substituting equations 3.47, 3.48 into 3.51, and assuming and are small, ex-

panding to first order gives

(3.53)

The collisional damping length can then be found from

(3.54)

For this can be simplified to

(3.55)
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Density 3 4 5

Table 3.1: Electron argon ion collision frequency as a function of electron temperature
and density.

If is taken to be the electron ion collision frequency, , then in terms of the plasma

resistivity,

(3.56)

The collisional damping length is

(3.57)

Table 3.1 gives the argon electron ion collision frequency as a function of electron

temperature and density while Figure 3.4 shows the argon electon neutral collision fre-

quency as a function of filling pressure and electron temperature.

3.4.2 Landau Damping

Landau damping was first proposed as a damping mechanism for helicon waves by Dol-

gopolov et al [46], who called it Cherenkov absorption. Boswell [13] also suggested that

Landau damping could be an explanation for the high damping rates measured, while

Chen [34] suggested the high ionisation efficiency of helicon waves could be explained

by Landau damping selectively exciting ionising electrons.
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Figure 3.4: Electron neutral collision frequency for Argon as a function of filling pressure
and electron temperature.
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Chen [34] presents a derivation of landau damping using simplifications applicable to

Basil. Solving for for the Boltzmann-Vlasov equations he finds an effective collision

rate due to landau damping

(3.58)

where

(3.59)

The thermal velocity of the electrons, being given by

(3.60)

From equation 3.55 this gives a landau damping length of

(3.61)

Landau damping becomes significant when the phase velocity of the wave is close to

the thermal velocity of the electrons.
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